Все для предпринимателя. Информационный портал

Функции сложного процента. Основы теории стоимости денег во времени

Шесть функций сложного процента могут быть использованы при проведении оценки объектов недвижимости. Накопленная сумма единицы позволяет ответить на вопрос: "За сколько можно продать собственность исходя из ее нынешней рыночной стоимости и ожидаемого роста последней по сложному проценту?" Накопление единицы за период показывает, как будут расти регулярные депозиты при сложном проценте. Фактор фонда возмещения показывает, какую сумму необходимо периодически депонировать для того, чтобы через определенное число периодов при сложном проценте накопить 1 долл. Он показывает, какой должна быть ежегодная норма, необходимая для возмещения инвестиций в данный актив.

Текущая стоимость единицы показывает нынешнюю стоимость денежной суммы, которая должна быть единовременно получена в будущем, например от ожидаемой продажи земли. Фактор аннуитета показывает стоимость потока денежных средств, например доходов, получаемых от сдаваемой в аренду собственности, или платежей по ипотечному кредиту. Фактор взноса на амортизацию единицы позволяет определить размер периодического платежа, необходимого для амортизации кредита, включая процент и выплаты основной суммы долга.

В основу каждой из шести функций положен сложный процент, который означает, что вся основная сумма, находящаяся на депозитном счете, должна приносить процент, включая процент, оставшийся на счете с предыдущих периодов. Более того, процент выплачивается только на денежные средства на депозитном счете, но не на снятые с него проценты или основную сумму вклада.

Шесть функций сложного процента могут быть использованы для решения почти всех арифметических задач, связанных с оценкой приносящих доход объектов недвижимости.

Деньги имеют временную стоимость, т.е. рубль, полученный сегодня, стоит дороже, чем рубль, полученный завтра. И не только потому, что инфляция способна снизить его покупательную способность, но и потому, что рубль, инвестированный сегодня, завтра принесет конкретную прибыль. Временная стоимость денег - важный аспект при принятии решений в финансовой практике вообще и при оценке инвестиций в частности.

Вычисление на основе сложного (кумулятивного) процента означает, что начисленные на первоначальную сумму проценты к ней присоединяются, а начисление процентов в последующих периодах производится на уже наращенную сумму. Процесс наращения капитала в этом случае происходит с ускорением. Он описывается геометрической прогрессией. Механизм наращения первоначальной суммы (капитала) по сложным процентам называют капитализацией. В финансовых и экономических терминах капитализация определяется как ставка дохода на вложенный капитал. При оценке-недвижимости и инвестиций данный термин приобретает несколько иное значение.

Различают годовую капитализацию (процентный платеж начисляется и присоединяется к ранее наращенной сумме в конце года), полугодовую, квартальную, месячную и ежедневную. Существует также понятие непрерывного начисления процентов, которое по своему смыслу весьма близко к ежедневному начислению.

Расчет наращенной суммы по сложным процентам производится по формуле:

денежный платеж рента задолженность

где S - наращенная сумма;

Р - первоначальная сумма, на которую начисляются проценты;

i - ставка сложных процентов, выраженная десятичной дробью;

п - число лет, в течение которых начисляются проценты.

Величина называется множителем наращения сложных процентов. Она показывает, на сколько увеличится одна денежная единица при наращении на нее процентов по ставке i в течение п лет.

Однако в большинстве случаев указывается не квартальная или месячная ставка, а годовая ставка, которая называется номинальной. Кроме того, указывается число периодов (т) начисления процентов в году. Тогда для расчета наращенной суммы используется формула:

где i - номинальная годовая процентная ставка;

т - число периодов начисления процентов в году;

п - число лет;

тп - число периодов начисления процентов за весь срок контракта.

По формулам (3.1) и (3.2) мы осуществляли дискретное наращение процентов, т.е. проценты начислялись раз в год, квартал или месяц. Непрерывное начисление процентов предполагает, что проценты начисляются за возможно наиболее короткий период времени. Хотя имеется в виду, что этот период будет бесконечно коротким, наиболее точным приближением непрерывного начисления процентов является ежедневное начисление. При этом для определения наращенной суммы можно использовать формулу (3.2). Так, при годовой ставке 10% и продолжительности года в 360 дней (подобная продолжительность года принята в банковских расчетах в ряде стран) при ежедневном начислении процентов.

Термин «дисконтирование» употребляется в финансовой практике очень широко. Под ним может пониматься способ нахождения величины Р на некоторый момент времени при условии, что в будущем при начислении на нее процентов она могла бы составить наращенную сумму S. Величину Р, найденную дисконтированием наращенной величины S, называют современной, текущей или приведенной величиной. С помощью дисконтирования в финансовых вычислениях учитывается фактор времени. Текущая стоимость - это величина, обратная наращенной стоимости, т.е. дисконтирование и ставка дисконта противоположны понятиям «накопление» и «ставка процента». Например, если вы через год должны получить по своему банковскому вкладу 1100 руб., а банк производил начисление из расчета 10% годовых, то текущая стоимость вашего вклада составляет 1 тыс. руб.

Так как текущая стоимость является обратной величиной наращенной суммы, то она определяется по формуле:

где - дисконтный множитель. Он показывает текущую стоимость одной денежной единицы, которая должна быть получена в будущем.

При начислении процентов т раз в году расчет текущей стоимости производится по формуле:

где - дисконтный множитель.

Рассматривая современную величину, необходимо обратить внимание на два ее свойства. Одно из них заключается в том, что величина процентной ставки, по которой производится дисконтирование, и современная величина находятся в обратной зависимости, т.е. чем выше процентная ставка, тем меньше современная величина при прочих равных условиях.

Также в обратной зависимости находятся современная величина и срок платежа. С увеличением срока платежа (п) современная величина будет становиться все меньше. Предел значений современной величины (Р) при сроке платежа (п), стремящемся к бесконечности, составит:

При очень больших сроках платежа его современная величина будет крайне незначительной. Так, например, если кто-то решит завещать своим потомкам получить через 100 лет сумму в 50 млн. руб., то для этого ему достаточно положить под 8% годовых 22,72 тыс. руб.

С ростом величины т (число периодов начисления процентов) дисконтный множитель уменьшается, а следовательно, снижается и текущая величина Р.

Между тем оплата по заключенным сделкам может предусматривать как разовый платеж, так и ряд выплат, распределенных во времени. Выплата арендной платы, выплаты за приобретенное имущество в рассрочку, инвестирование средств в различные программы и т.п. в большинстве случае предусматривают платежи, производимые через определенные промежутки времени, т.е. образуется поток платежей.

Ряд последовательных фиксированных платежей, производимых через равные промежутки времени, называются финансовой рентой, или аннуитетом.

По моменту выплат членов ренты последние подразделяются на обычные (постнумерандо), в которых платежи производятся в конце соответствующих периодов (года, полугодия и т.д.), и пренумерандо, в которых платежи осуществляются в начале этих периодов. Встречаются также ренты, в которых предусматривается поступление платежей в середине периода.

Обобщающими показателями ренты являются: наращенная сумма и современная (текущая, приведенная) величина.

Наращенная сумма - это сумма всех членов потока платежей с начисленными на них процентами на конец срока, т.е. на дату последней выплаты. Наращенная сумма показывает, какую величину будет представлять капитал, вносимый через равные промежутки времени в течение всего срока ренты вместе с начисленными процентами.

Современная величина потока платежей - это сумма всех его членов, уменьшенная (дисконтированная) на величину процентной ставки на определенный момент времени, совпадающий с началом потока платежей или предшествующий ему.

Величина является коэффициентом наращения ренты, который называют также коэффициентом накопления денежной единицы за период.

Ранее указывалось, что некоторые ренты реализуются сразу же после заключения контракта, т.е. первый платеж производится немедленно, а последующие платежи производятся через равные интервалы. Такие ренты (пренумерандо) также называются авансовыми, или причитающимися аннуитетами. Сумма членов такой ренты вычисляется по формуле:

То есть сумма членов ренты пренумерандо больше наращенной суммы ренты постнумерандо в раз, поэтому наращенная сумма ренты пренумерандо равна:

где S - наращенная сумма постнумерандо.

В случаях когда платежи производятся в середине периодов, вычисление наращенной суммы производится по формуле:

где S 0 - наращенная сумма платежей, выплачиваемых в конце каждого периода (рента постнумерандо).

Современная величина ренты (ее также называют текущей, или приведенной величиной) является суммой всех членов ренты, дисконтированных на момент приведения по выбранной дисконтной ставке. Для ренты с членами, равными R, современная величина рассчитывается по формуле:

где А - коэффициент приведения ренты, показывающий сколько рентных платежей (R) содержится в современной величине;

i - годовая процентная ставка, по которой производится дисконтирование;

п - срок рентных платежей.

Данный показатель также называется текущей стоимостью обычного аннуитета, или текущей стоимостью будущих платежей. Коэффициенты приведения ренты - табулированы.

Расходы, связанные с погашением долга, т.е. погашение суммы самого долга (амортизация долга), и выплатой процентов по нему, называются расходами по обслуживанию долга.

Существуют различные способы погашения задолженности. Участники сделки оговаривают их при заключении контракта. В соответствии с условиями контракта составляется план погашения задолженности.

Одним из важнейших элементов плана является определение числа выплат в течение года, т.е. уточнение числа так называемых срочных уплат и их величины.

Срочные уплаты рассматриваются как средства, предназначенные для погашения как основного долга, так и текущих процентных платежей по нему. При этом средства, направленные на погашение (амортизацию) основного долга, могут быть равными или изменяющимися по каким-либо закономерностям, а проценты могут выплачиваться отдельно.

Погашение долга может производиться аннуитетами, т.е. платежами, вносимыми через равные промежутки времени и содержащими как выплату основного долга, так и процентный платеж по нему. Величина аннуитета может быть постоянной, а может изменяться в арифметической или геометрической прогрессии.

Ниже рассмотрим случай, когда план составлен таким образом, чтобы погашение кредита производилось в конце каждого расчетного периода равными срочными уплатами, включающими выплату основной суммы долга и процентов по нему и позволяющими полностью погасить кредит в течение установленного срока. Каждая срочная уплата (Y) будет являться суммой двух величин: годового расхода по погашению основного долга (R) и процентного платежа по нему (I), т.е.

Расчет срочной годовой уплаты производится по формуле:

где i - процентная ставка;

п - срок кредита;

D - величина долга.

Величина называется коэффициентом погашения задолженности, или взносом на амортизацию денежной единицы. Его можно также представить как обратную величину текущей стоимости аннуитета, т.е. .

На практике может потребоваться знание величины остатка невыплаченного основного долга на какой-либо период. Эта величина рассчитывается по формуле:

где k - номер расчетного периода, в котором произведена последняя срочная уплата.

Покупка недвижимости в большинстве случаев сопряжена с получением кредита. В связи с этим необходимо заранее знать, какую сумму потребуется депонировать в каждый платежный период, чтобы обеспечить погашение основной суммы долга (без учета процентных выплат) в установленный срок.

Для решения этой задачи воспользуемся формулой:

где R 1 - расход по погашению основного долга в первом платежном периоде;

D - сумма основного долга;

п - срок кредита;

i - процентная ставка.

Величина называется фактором фонда возмещения. Она показывает, какую сумму потребуется депонировать в конце каждого платежного периода, чтобы через заданное число периодов сумма основного кредита была полностью погашена.

Для расчета суммы, идущей на погашение основного долга в любом периоде, необходимо перемножить фактор фонда возмещения и множитель наращения сложных процентов для данного периода, т.е.

где k - число периодов, за которые произведено погашение основного долга.

Нами были рассмотрены функции сложного процента с использованием основной формулы, описывающей накопленную сумму единицы. Все рассмотренные формулы (факторы) являются производными от основной формулы. Каждая из них предусматривает, что проценты приносят деньги, находящиеся на депозитном счете, причем только до тех пор, пока они остаются на этом счете. Каждая из формул учитывает эффект сложного процента, т.е. такого процента, который, будучи полученным, переводится в основную сумму.

Все перечисленные формулы сведены в таблицу, что несколько облегчает ведение финансовых расчетов. Таблица имеет наименование: «Таблицы сложных процентов. 6 функций сложного процента». Величины, входящие в таблицу, находятся между собой в определенной связи. Ниже в табл. приводится эта связь.

Вопрос 2. Шесть функций сложного процента.

Существуют две схемы начисления процентов.

Вопрос 1. Основные понятия и операции финансовой математики.

Известно, что в условиях инфляции куда более очевидно, что деньги изменяют свою стоимость с течением времени. По этой причине, для финансовой математики главным является, что деньги завтра - ϶ᴛᴏ деньги не сегодня. Под действием инфляции и дохода на капитал.

PV(P) – настоящая или текущая стоимость денежной единицы;

FV(S) – будущая стоимость денежной единицы;

n – число периодов (лет) на которые отстоит некоторый момент в будущем от момента сейчас;

i - ставка дохода;

PMT (R) - ϶ᴛᴏ единичный равновеликий, равнопериодичный платеж (поступление).(обычный аннуитет). Следует разобрать понятие аннуитет более подробно. Общий термин для понятия аннуитет - денежный поток (cash flow). (Киядзаки)

Выделяют:

I. Обычный аннуитет - ϶ᴛᴏ денежный поток или его вид обладающий тремя характеристиками:

1. Все элементы равновелики.

2. Поступают через равные промежутки.

3. Элементы CF поступают в конце каждого периода (нет в авансовом аннуитете).

II. Авансовый аннуитет - это аннуитет, платежи по которому реализуются в начале каждого периода.

Как же это связать с оценкой: Итак, для определœения стоимости собственности, приносящей доход, крайне важно определить текущую стоимость денег, которые будут получены через какое-то время в будущем.

Основными операциями, позволяющими сопоставить разновременные деньги, являются операции накопления (наращивания) и дисконтирования.

Накопление - ϶ᴛᴏ финансовая операция по приведению стоимости денег в настоящий момент времени к стоимости денег в какой-то момент в будущем.

Дисконтирование - ϶ᴛᴏ финансовая операция по приведению стоимости денег в некоторый момент времени в будущем к стоимости денег в настоящий момент времени.

Основное свойство этих операций: Оба являются абсолютно взаимообратными финансовыми операциями.

1. Простые проценты.

FV n =PV(1+ni )

PV=1000р. i -10% FV1=1100 FV2=1200 FV3=1300

2. Сложные проценты.

FV n =PV(1+i ) n

PV=1000р. i -10% FV1=1100 FV2=1210 FV3=1331

Пример: Вы положили на счёт 100 р под 20% в год, на 17 лет. Какая сумма будет на счете в конце периода.

FV n =PV(1+i ) n = 100(1+0,2) 17 =2218,61

Всего рассматривают шесть функций денежной единицы, основанных на сложном проценте. Для упрощения расчетов разработаны таблицы шести функций для известных ставок дохода и периода накопления (i и n).

Таблица 1.1. Структура таблиц шести функций денег
№ колонки Колонка 1 Колонка 2 Колонка 3 Колонка 4 Колонка 5 Колонка 6
Функция денег Будущая стоимость единицы Накопление единицы за период Фактор фонда возмещения Текущая стоимость единицы Текущая стоимость аннуитета Взнос на амортизацию единицы
Формула
Задано: PV, i, n PMT, i, n FV, i, n FV, i, n PMT, i, n PV, i, n
Определить FV FV PMT PV PV PMT
Тип решаемых задач Будущая стоимость текущей денежной суммы Какой будет стоимость платежей к концу периода Норма погашения основной части кредита (of) Текущая стоимость денежной суммы, которая будет получена в будущем Текущая стоимость денежных платежей Регулярный периодический платеж по кредиту, включающий в проценты и выплату кредита (on + of)

Ежегодное и ежемесячное начисление процентов.

Функция 1 : используется в том случае, когда известна текущая стоимость денег и крайне важно определить будущую стоимость денежной единицы при известной ставке доходов на конец определœенного периода (n).

Правило ʼʼ72-хʼʼ: Для примерного определœения срока удвоения капитала (в годах) крайне важно 72 разделить на целочисленное значение годовой ставки дохода на капитал. Правило действует для ставок от 3 до 18%.

Пример 2.1: Определить, какая сумма будет накоплена на счете к концу 3-го года, в случае если сегодня положить на счет, приносящий 10% годовых, 10 000 рублей.

FV = 10000 [ (1+0,1) 3 ] = 13310

Функция 2: Накопление денежной единицы за период. В результате использования данной функции определяется будущая стоимость серии равновеликих периодических платежей (поступлений).

Пример 2.2: Определить сумму, которая будет накоплена на счете, приносящем 12% годовых, к концу 5-го года, в случае если ежегодно откладывать на счёт 10 000 рублей.

10000 кол№2

Функция 3: Фактор фонда возмещения. Данная функция обратна функции накопления единицы за период. Фактор фонда возмещения показывает аннуитетный платеж, который крайне важно депонировать под заданный процент в конце каждого периода для того, чтобы через заданное число периодов получить искомую сумму.

Функция 4: Текущая стоимость единицы (дисконтирование).

Функция 5: Текущая стоимость аннуитета.

Пример 2.3: Объект приносит по 1000$ каждый год в течении 15 лет. Определить рыночную стоимость (аренды ) объекта͵ если среднерыночная ставка доходности 10% годовых.

Функция 6: Взнос за амортизацию единицы. Функция является обратной величиной текущей стоимости аннуитета.

Другие примеры:

Пример 2.4 : Дополнение к задаче 2.3: Определить инвестиционную стоимость (аренды ) объекта и определить будет ли инвестор Семенов покупать данный объект. Доходность на инвестиции фонда Инвестора Семенова 14%.

PV = 1000 кол№5 = 1000*7,60608=7606,08$

Ответ: нет.

Количество участников конкурса "Лучший частный инвестор 2009" превысило 930 трейдеров. Рекорд доходность 6468,9% или 2,3 миллиона рублей с момента старта соревнования.

Пример 2.5: Вы взяли кредит 1000$ на 3 года под 10% годовых. а) какова величина ежегодного погасительного платежа. б) какова структура каждого платежа. в) какова структура выплат в целом за 3 года.

а) PMT = 1000 кол№6 = 1000*0,4021148=402,11$

Из 402: 102 - ϶ᴛᴏ выплаты процентов (on).

302 – норма возврата капитала (of).

В конце года осталось 698$ от тела кредита:

в) 206/1000=0,206 ᴛ.ᴇ. 20,6% ∑of=1000 ∑on=206

Вопрос 2. Шесть функций сложного процента. - понятие и виды. Классификация и особенности категории "Вопрос 2. Шесть функций сложного процента." 2017, 2018.

Основой финансовой математики являются следующие шесть функций

сложного процента (или шесть функций денег):

1. Будущая стоимость единицы (накопленная сумма единицы) – FV (Future value ).

2. Будущая стоимость аннуитета (накопление единицы за период) – FVA (Future value of an annuity ).

3. Фактор фонда возмещения (периодический взнос в фонд накопления) – SFF (Sinking fund factor ).

4.Текущая стоимость единицы (дисконтирование, реверсия) – PV (Present value ).

5.Текущая стоимость аннуитета – PVA (Present value of annuity ).

6.Взнос на амортизацию единицы – IAO (Installment of amortize one ).

Эти функции используются в различных финансовых расчетах. Рассмотрим каждую из этих функций с точки зрения ее математической формулировки и сферы применения.

Функции наращения

Будущая стоимость денежной единицы (накопленная сумма единицы)

Данная функция позволяет определить будущую стоимость инвестированной денежной единицы, исходя из предполагаемых: ставки дохода (r), срока накопления (n) и периодичности (частоты) начисления процента (m):

FV = PV * (1+ r)n = PV * FМ1(r, n),

где FV – будущая стоимость денег;

PV – текущая стоимость денег;

r – ставка дохода;

n – число периодов накопления.

FМ1(r, n) = (1+ r)n – мультиплицирующий множитель, значения которого рассчитаны для разных значений (r) и (n) и представлены в соответствующих финансовых таблицах. Иногда его обозначают как FVIF (от англ. Future Value Interest Factor – процентный множитель будущей стоимости).

Экономический смысл множителя FМ1(r, n) состоит в том, что он показывает, чему будет равна одна денежная единица через (n) периодов при заданной процентной ставке (r). Справедливость формулы очевидна (рисунок 6.7).

Если на депозит положена сумма PV, то через один период начисления эта сумма станет равна:

FV1= PV + PV * r = PV * (1 + r),

через два периода она станет равна:

FV2= FV1+ FV1* r = FV1* (1+ r) = PV (1 + r)2,

FVn= FVn−1 + FVn−1* r = FVn−1* (1+ r) = PV (1 + r)n.

Рисунок 6.7 – Будущая стоимость денежной единицы

Пример. $1000 вложено в банк под 10 % годовых. Какая сумма накопится на счете через 5 лет? 10% переводим в относительные единицы, для этого делим их на 100% и получаем 10% / 100% =0,1.

FV5= 1000 (1+ 0,1)5= 1610,5.

Правило 72-х. Иногда при расчетах приходится сталкиваться с задачей определения количества периодов начисления, по истечении которых первоначально депонированная сумма увеличивается вдвое. Очень просто решить эту задачу позволяет известное «Правило 72-х», согласно которому – количество периодов, необходимое для удвоения первоначальной суммы вычисляется по формуле:

n = 72 / r .

Данное правило позволяет получить точные результаты при значениях r: 3% < r < 18%. Срабатывает правило и в обратном порядке для определения ставки дохода, при которой депонированная сумма удвоится.

Например, при ставке 6% годовых сумма удвоится за 72 / 6 = 12 лет.

Более частое, чем один раз в год, начисление процентов. Приведенные выше расчеты основывались на том предположении, что начисление процентов происходит один раз в год. Однако аккумулирование может происходить не только раз в год, но и чаще, например раз в квартал, раз в месяц и т. д. В этом случае необходимо ставку процента разделить на частоту накопления в течение года (m), а число лет накопления (n) умножить на частоту накопления в течение года (m). Формула расчета будет выглядеть следующим образом:

FV = PV (1 + r/m)n*m,

где m – частота начисления процентов в год;

n – число лет, в течение которых происходит накопление.

Чем чаще начисляются проценты, тем больше накопленная сумма. Приведенное преобразование справедливо в отношении всех шести функций.

6.2.1.2. Будущая стоимость аннуитета (накопление единицы за период)

Данная функция показывает, какой будет стоимость серии равных

платежей величиной (А) по истечении установленного срока их наращения (n) (рисунок 6.8).

Рисунок 6.8 – Будущая стоимость аннуитета постнумерандо

Из рисунка 6.8 видно, что будущая стоимость исходного денежного потока (аннуитета) постнумерандо (FVАpst) может быть оценена как сумма наращенных поступлений.

Очевидно, что будущая стоимость последнего платежа совпадает с величиной самого платежа, т.к. отсутствует период наращения:

Будущая стоимость предпоследнего платежа будет наращена за один период и составит:

Аналогично наращиваются все платежи. Будущая стоимость первого платежа будет наращена за (n-1) периодов и составит:

FVn-1= А·(1+r) n-1.

Их общую сумму можно выразить как:

FVАpst = А·(1+r)n-1+ А·(1+r)n-2+ ...+ А·(1+r) + А

Вынесем (А) за знак скобки и обозначим (1+r) через (q). Получим выражение:

FVА = А·(qn-1+ qn-2+ ...+ q + 1).

Теперь отчетливо видно, что многочлен, содержащийся в скобках, называемый мультиплицирующий множитель и обозначаемый (FМ3(r, n)), представляет собой сумму членов геометрической прогрессии (S), но записанной в обратном порядке:

S = 1 + q + q2… + qn-2+ qn-1

Умножим обе части этого уравнения на (q) и получим:

S·q = q + q2… + qn-1+ qn

Вычтя из полученного уравнения предыдущее, получим:

S·q – S = qn–1.

S = (qn– 1) / (q – 1)

Теперь, подставив вместо (q) его значение (1+r), получаем формулу расчета мультиплицирующего множителя:

FМ3(r, n) = S = ((1+r)n– 1)/r

Следовательно, выражение для будущей стоимости обычного аннуитета величиной (А) за (n)периодов будет иметь вид:

FVАpst = А·FМ3(r, n) = А·((1+r)n– 1)/r).

Данный мультипликатор еще называют - процентный множитель будущей стоимости аннуитета FVIFA(r, n) – Future Value Interest Factor of Annuity. Экономический смысл мультиплицирующего множителя заключается в том, что он показывает, чему будет равна суммарная величина срочного (на определенный срок) накопленного аннуитета величиной в одну денежную единицу к концу срока его действия.

Поскольку значения множителя (FМ3(r, n)) зависит лишь от (r) и (n), то они рассчитаны для разных значений (r) и (n) и представлены в соответствующих финансовых таблицах.

Пример. Если вкладывать ежегодно $900 на счет в банке под 10% годовых, сколько накопится на нем через 5 лет?

FVА5= 900·((1+0,1)5− 1) / 0,1) = 5494,59

Теперь рассмотрим случая авансового аннуитета (рисунок 6.9).

Как и в случае обычного, рассмотрим накопленные суммы в конце первого, второго... n -го периода:

FV1= А·(1+r) ,

FV2= А·(1+r)2,

…………………………………………….……….

FVn= А· (1+r)n

FVАpre = А·(1+r)n+А·(1+ r)n −1+...+ А·(1+r)2+ А·(1+r).

Рисунок 6.9 – Будущая стоимость авансового аннуитета (пренумерандо)

Сравнив формулы расчета FVАpst и FVАpre, легко убедиться, что

FVАpre = FVАpst (1+ r).

Произведя соответствующее умножение, получим:

FVАpre = FVАpst·(1+ r) = А· ((1+r)n– 1)/r) (1+ r) =

А· ((1+r)n+1– 1 – r)/r) = А· ((1+r)n+1– 1)/r) – 1).

Периодические депозиты могут вноситься чаще, чем один раз в год, соответственно чаще накапливается процент. При этом количество начислений увеличится в m раз и составит (n·m), а ставка уменьшится в m раз и составит (n/m). Тогда ранее полученная формула примет вид:

FVАn= А·(((1+r/m)(n+1)m– 1)/r/m) – 1).

Чем чаще делаются взносы, тем больше накопленная сумма.

Пример. Если вкладывать ежемесячно $75 на счет в банке под 10 % годовых, сколько накопится на нем через 5 лет?

FVА5= 75 (((1+0,1/12) 5·12– 1) / 0,1/12 = 5807,78.

Фактор фонда возмещения

Данная функция позволяет рассчитать величину периодического платежа (А или SFF, как его в таком случае называют), необходимого для накопления нужной суммы (FVА) по истечении (n)платежных периодов при заданной ставке процента (r) (рисунок 6.10).

Рисунок 6.10 – Периодический взнос в фонд накопления

Из формулы будущей стоимости аннуитета (FVА = А·FМ3(r, n)) следует, что величина каждого платежа (SFF или А) в случае обычного аннуитета вычисляется следующим образом:

SFFpst = Аpst = FVА / FМ3(r, n) = FVА·r/((1 + r)n− 1) = FVА·FМ5(r, n) .

где FМ5(r, n) = r/((1 + r)n− 1) – мультиплицирующий множитель, значения которого рассчитаны для разных значений (r) и (n) и представлены в соответствующих финансовых таблицах.

Экономический смысл множителя FМ5(r, n) состоит в том, что он показывает величину периодических платежей необходимых для накопления одной денежной единицы через (n) периодов.

Пример. Необходимо за 4 года скопить $1000 при ставке банка 10%. Сколько придется вкладывать каждый год?

SFF = 1000 (0,1 / ((1 + 0,1)4− 1) = 215,47.

В случае авансового фонда возмещения (соответствующего авансовому аннуитету) формула единичного платежа (SFFpre) имеет вид:

SFFpre = FVА·r/((1 + r)(n+1)− 1− r).

Функции дисконтирования

Л.О. Григорьева

Управление инвестициями

Учебный модуль

Улан-Удэ

Издательство ВСГТУ


введение………………………………………………………………….…………………………………
Тема 1. Понятие и классификация инвестиций………………………………………..…….
1.1. Понятие инвестиций и их классификация……………………………………...…………………….
1.2. Инвестиционный процесс и механизм инвестиционного рынка……………………….………….
1.3. Шесть функций сложного процента………………………………………………………………....
Тема 2. Экономические, правовые и организационные основы инвестиционной деятельности в РФ……………………..………………………....................
2.1 Нормативная база инвестиционной деятельности в РФ……………………………………………
2.2 Методы государственного регулирования инвестиционной деятельности……………………….
Контрольные вопросы……………………………………………………………………………………….
Тесты………………………………………………………………………………………………………….
Тема 3. Источники финансирования инвестиционной деятельности………….
3.1 Классификация источников финансирования инвестиционной деятельности предприятия……
3.2 Основные методы финансирования инвестиционной деятельности………………………………
3.3 Анализ цены и структуры капитала………………………………………………………………….
3.4 Методы расчета потребности в инвестициях……………………………………………………….
Контрольные вопросы……………………………………………………………………………………….
Тесты………………………………………………………………………………………………………….
Тема 4. Планирование инвестиций. Этапы составления бизнес-плана………..
4.1 Сущность и классификация инвестиционных проектов……………………………………………
4.2 Жизненный цикл инвестиционного проекта………………………………………………………..
4.3 Методика составления и структура бизнес-плана инвестиционного проекта…………………….
Контрольные вопросы……………………………………………………………………………………….
Тесты………………………………………………………………………………………………………….
Тема 5. Оценка эффективности инвестиционного проекта…….…………………..
5.1 Основные аспекты оценки эффективности инвестиционных проектов………………………….
5.2 Оценка финансовой состоятельности инвестиционного проекта…………………………………
5.3 Оценка экономической эффективности инвестиционных проектов………………………………
Контрольные вопросы……………………………………………………………………………………….
Тесты………………………………………………………………………………………………………….
Задачи для практических занятий………………………………………………………………………….
Тема 6. Риск- менеджмент инвестиционного проекта ……………………………….
6.1 Сущность и классификация рисков инвестиционного проекта…………………………………..
6.2 Риск- менеджмент инвестиционного проекта……………………………………………………….
6.3 Методы оценки проектного риска…………………………………………………………................
6.4 Приемы по управлению рисками проекта……………………………………………………………
Контрольные вопросы………………………………………………………………………………………..
Тесты…………………………………………………………………………………………………………..
Тема 7. Оценка инвестиционных качеств и эффективности финансовых инвестиций ………………………………………………………………………………………………
7.1. Расчет доходности по операциям с ценными бумагами…………………………………………….
7.2 Расчет будущего капитала в финансовых инвестициях…………………………………………….
7.3 Расчет курсовой стоимости ценных бумаг…………………………………………………………...
7.4 Особенности оценки инвестиций в вексельном обращении……………………………………….
Контрольные вопросы……………………………………………………………………………………….
Тесты………………………………………………………………………………………………………….
Задачи для практических занятий…………………………………………………………………………..
Тема 8. Формирование инвестиционного портфеля……………………………………
8.1 Понятие и виды инвестиционных портфелей………………………………………………………
8.2 Доходность портфеля…………………………………………………………………………………
8.3 Риск портфеля…………………………………………………………………………………………
Контрольные вопросы……………………………………………………………………………………….
Тесты………………………………………………………………………………………………………….
Задачи для практических занятий……………………………………………………………………………
ПриложениЕ1……………………………………………………………………………………………….
ПриложениЕ2……………………………………………………………………………………………….
Приложение 3………………………………………………………………………………………………

Тема 1. Инвестиции. Сущность инвестиционного процесса

Шесть функций сложного процента

Первая функция сложного процента – это фактор будущей стоимости текущего (сегодняшнего) капитала.

FV = PV*(1+i) n (1.4)

FV – это будущая стоимость текущего капитала (future value);

PV – текущая стоимость капитала (present value);

i – ставка процента;

n – количество периодов.

В каких случаях используется формула сложного процента:

Мы имеем какую-то сумму денег. Мы хотим положить ее в банк под определенный процент, на определенный срок (год, месяц, квартал). При этом мы хотим знать: сколько будут стоить наши деньги в конце срока вклада.

Пример. Допустим у нас есть 1 руб. и мы кладем его в начале года в банк, под 10% годовых на 5 лет. Сколько будет стоить этот руб. через 5 лет?

FV = 1 руб.*(1+10%) 5 = 1,61 руб.

Пример . Вы положили деньги в банк 1000 руб. под 24% годовых на 1 год. Аккумулирование (т.е. начисление %) происходит два раза в год по фиксированной годовой ставке. Надо определить периодическую ставку (i p), будущую стоимость текущего капитала (FV), величину дохода на капитал (Д) и фактическую годовую ставку (i ф).

Определим периодическую ставку, в данном случае – полугодовую: i p = i г /2 = 24% /2 =12%

Определим будущую стоимость текущего капитала: FV =1000(1+0,12) 2 = 1254,4 руб.

Определим величину дохода на капитал: Д = FV – PV = 1254,4 – 1000 = 254,4 руб.

Определим фактическую годовую ставку: i ф = (FV–PV)/PV=(1254,4–1000)/1000=0,2544=25%

Фактическая ставка включает начисленные сложные проценты, поэтому она всегда больше, чем номинальная ставка. Кроме того, чем больше периодов начисления процентов в году, тем эта разница будет существеннее.

Пример . Через сколько лет произойдет удвоение капитала, если известно, что годовая номинальная ставка, под которую положили деньги в банк равна 12%?

Решение этой задачки основано на использовании так называемого «правила 72-х». Согласно этому правилу, количество лет, через которое произойдет удвоение вложенной суммы, определяется по формуле: 72 / номинальная годовая ставка %

72 / 12% = 6 лет.

Правило дает удовлетворительный ответ при ставке, находящейся в диапазоне от 3 до 18%.

Вторая функция сложного процента – фактор будущей стоимости аннуитета.

Она предназначена для определения будущей стоимости равновеликих накоплений капитала за определенное число периодов, т.е. когда мы, например, будем вкладывать одну и ту же суму денег (РМТ) в течение какого-то времени(1,2,3 года и т.п.).

РМТ (payment ) – единовременный платеж в периоде k. (периоды одинаковые).

Серия таких платежей называется аннуитетом .

Различают обычный и авансовый аннуитет .

Будущая стоимость обычного аннуитета (платежи в конце каждого периода). Его будущая стоимость выражается в формуле:

Пример . Чтобы накопить себе на автомобиль, вы решили откладывать в банк по 1000 $ каждый год при 12% годовых в течение 5 лет. Как лучше откладывать деньги (в конце или в начале года), чтобы получить через 5 лет большую сумму и сколько денег окажется на вашем счете через 5 лет?

Определим, сначала, сколько денег мы получим через 5 лет, если будем откладывать в конце каждого года:

Таким образом, получается, что вкладывать в начале каждого года гораздо выгоднее, чем в конце.

Третья функция сложного процента – фактор фонда возмещения.

Фактор фонда возмещения – это величина платежа, который необходимо депонировать (вкладывать) в каждом периоде при заданной ставке годового процента, чтобы в последнем периоде получить на счете определенную (желаемую) сумму. Т.е. допустим, мы хотим получить 1 миллион рублей через пять лет. Для этого можно положить деньги в банк. Нам известна величина банковского процента. Фактор фонда возмещения (ФФВ) определяет величину периодических равновеликих платежей, которые нам придется платить эти 5 лет. То есть ФФВ - это то же РМТ.

Различают Фактор Фонда Обычного Возмещения и Фактор Фонда Авансового Возмещения, в зависимости от того, когда (в конце или начале периода) производятся платежи.

Фактор Фонда Обычного Возмещения (платежи в конце каждого периода):

2-я и 3-я функции сложного процента взаимосвязаны между собой через формулы. 2-я функция – это определение FV, а 3-я – это определение PV.

Пример . Вы взяли у своего знакомого в долг и через 5 лет должны вернуть 1000$. Чтобы проще было расплатиться с долгами, вы решили откладывать деньги в банк каждый год. Банковская ставка также равна 15% годовых. Как выгоднее депонировать деньги – в начале года или в конце года? Какую сумму вы должны депонировать в банке, чтобы в конце 5-го года выплатить эту 1000$?

1. Фактор Фонда Обычного Возмещения:

ФФОВ = _____15%___ *1000$ = 148 $
(1+15%) 5 - 1
  1. Фактор Фонда Авансового Возмещения:

2. Фактор Фонда Авансового Возмещения:

ФФАВ = ________1,25%__________ *10000$ = 111,5 $
(1+1,25%) 5*12+1 – (1+1,25%)

Каждый месяц вам выгоднее откладывать по 111,5 $.

Четвертая функция сложного процента – фактор текущей стоимости будущего капитала.

Текущая стоимость будущего капитала – это сегодняшняя стоимость капитала, который должен быть получен в будущем. Математически выразить текущую стоимость будущего капитала можно следующим образом:

PV = FV /(1+i) n (1.9)

Как вы заметили 4-я и 1-я функция сложного процента взаимосвязаны между собой одной формулой. 1-я функция определяет будущую стоимость текущего капитала.

Пример. Вы решили накопить 12000$. Эта сумма понадобится вам через 4 года. Сколько денег сегодня вы должны положить в банк под 10% годовых, чтобы через 4 года получить 12000$.

PV = 12000$ /(1+10%) 4 = 8196 $

Пятая функция сложного процента – фактор текущей стоимости аннуитета.

5-я функция предназначена для определения текущей стоимости (PV) равновеликих накоплений капитала за определенное число периодов, т.е. когда мы, например, будем вкладывать одну и ту же сумму денег (РМТ) в течение какого-то времени (1,2,3 года и т.д.) при известной норме прибыли (i ).

В этом смысле, 5-я функция несколько похожа на 2-ю функцию сложного процента, с той лишь разницей, что 2-я определяет FV.

Различают фактор текущей стоимости Обычного аннуитета (платежи в конце каждого периода) и Авансового Аннуитета (платежи в начале каждого периода).

Текущая стоимость обычного аннуитета:

2. Если платежи будут производится в начале каждого года:

Авансовый взнос на амортизацию (платежи в начале периода):

2. Если платежи в начале года:

РМТн = 15000$*12%_____ = 3715$
(1+12%) – (1+12%) – (5 – 1)

Контрольные вопросы

1. Охарактеризуйте понятие инвестиций, приведите варианты их классификации.

2. В чем заключаются основные отличия между инвестициями и капитальными вложениями?

3. Что представляет собой инвестиционная деятельность, и из каких этапов она состоит?

4. Какие субъекты инвестиционной деятельности можно выделить? Их отличия и основные характеристики?

5. Объекты инвестиционной деятельности, их отличия и основные характеристики.

6. Реципиент, как субъект инвестиционной деятельности?

7. Какова структура инвестиционного рынка?

8. Какова структура инвестиционного рынка в России? Перечислить и охарактеризовать его составляющие.

1.1. Какие из приведенных ниже вложений в большинстве случаев не относятся к инвестициям?

а) приобретение иностранной валюты;

б) вложения в облигации на вторичном рынке;

в) вложения в депозитные сертификаты;

г) лизинговое финансирование;

д) вложения в акции на первичном рынке.

1.2. Основными целями инвестирования являются:

а) получение прибыли;

б) достижение социального эффекта;

в) накопление капитала

1.1. Прямые инвестиции предполагают:

а) привлечение финансовых посредников к реализации инвестиционных проектов;

б) использование внутренних источников финансирования инвестиций;

в) непосредственное участие инвестора в выборе объектов инвестирования и вложения капитала.

1.2. Какой из перечисленных ниже субъектов экономики не является участником (исполнителем) инвестиционной деятельности?

а) инвестор;

б) исполнитель;

в) проектировщик;

г) подрядчик;

д) страховое общество.

1.3. В какой сфере протекает инвестиционная деятельность?

б) обращения;

в) материального производства;

г) нематериального производства.

1.4. Инвестиционная деятельность коммерческих банков в сфере реального инвестирования имеет следующие формы:

а) инвестиционное кредитование;

б) инвестирование в ценные бумаги;

в) проектное финансирование;

г) долевое участие.

1.7. Какие из приведенных ниже элементов относятся к материальным элементам инвестиций?

а) коммуникации;

б) природные ресурсы;

в) вложения в человеческий капитал;

г) ценные бумаги;

д) патенты, лицензии.

1.8. Что лежит в основе деления инвестиций на реальные, финансовые и инвестиции в нематериальные активы?

а) объекты вложения инвестиций;

б) воспроизводственные формы;

в) стадии инвестиционного процесса;

г)субъекты инвестиционной деятельности.

1.9. Концепцию инвестиционного мультипликатора разработал:

а) Р.Ф. Кан;

б) Самуэльсон;

в) Дж. М. Кейнс.

1.10. Инвестиции в нематериальные активы - это:

а) вложения в торговые марки, товарные знаки, авторские права и т.д.;

б) затраты на приобретение объектов природопользования;

в) вложения в оборотные средства предприятия.

Задачи для практических занятий

Задача 1.1.

Рассчитайте ежегодный взнос для оплаты квартиры стоимостью 800 тыс. руб., купленной в рассрочку на 10 лет под 12%.

Задача 1.2.

Рассчитайте ежегодный взнос под 12% для покупки через 10 лет квартиры стоимостью 800 тыс. руб.

Задача 1.3.

Рассчитайте взнос под 12% для покупки через 10 лет квартиры стоимостью 800 тыс. руб.

Задача 1.4.

Квартира продана за 800 тыс. руб., деньги приносят 12% годового дохода. Какова предельная стоимость недвижимости, которую можно будет купить через 10 лет?

Задача 1.5.

Какова предельная стоимость недвижимости, которую можно будет купить через 10 лет, если ежегодно откладывать по 80 тыс. руб. под 12%?

Задача 1.6.

Сколько стоила квартира, купленная в рассрочку на 10 лет под 12% годовых, если ежегодный взнос составляет 80 тыс. руб.?

  • В) Особенности основных психологических функций в интровертной установке.
  • В) Особенности основных психологических функций в экстравертной установке.

  • Сложные проценты применяют в тех случаях, когда процент по кредитам (ссудам) выплачивают не сразу, а его присоединя­ют к сумме долга с последующим определением наращенной суммы FV. Такая процедура начисления «процент на процент» называется капитализацией. Наращение идет по сложному про­центу в геометрической прогрессии, а процесс компаудинга (на­копления) описывается уравнением FV= PV(1+i) n

    В свя­зи с этим для расчета процентной суммы используется следую­щая формула:

    где i - годовая ставка;

    n - количество периодов начисления;

    m - число периодов начисления;

    n*m - общее число периода начисления.

    Когда интервалы между очередными платежами постоянны, то такую последовательность называют финансовой рентой или аннуитетом. Аннуитет (серия равновеликих платежей в течение n-периодов) называется обычным, если платежи осуществляются в конце каждого периода, и авансовым, если платежи осуществ­ляются в начале каждого периода.

    Первая функция сложного процента - аккумулированная сум­ма капитала. Мы уже убедились, что в отличие от простого про­цента сложный предполагает, что доход приносит не только пер­воначальная сумма, но и полученный ранее процент на нее. Для определения стоимости, которую будет иметь капитал через не­сколько лет FV при использовании процедуры сложных процен­тов, используют формулу, отражающую процесс аккумулирования (компаундинга), наращения в соответствии с геометрической про­грессией: FV= PV(1+i) n

    где FV- аккумулированная (будущая) сумма капитала;

    PV - текущая стоимость (стоимость инвестиций в начальный пери­од);

    i - ставка процента (например, i = 0,10, т.е. 10%);

    n - количество периодов начисления.

    Эта формула в финансово-экономических расчетах и опреде­ляет первую функцию сложного процента, а выражение (1+i) n называется множителем (коэффициентом) наращения или буду­щей стоимостью единицы аккумулированного капитала F 1: F 1 =(1+i) n

    где F 1 рассчитывается или определяется по таблице сложных процентов.

    Таким образом, процесс аккумулирования депонированно­го, или инвестированного, капитала есть процесс накопления денег по заданной ставке i в течение определенного периода времени п.

    При более частом, чем один раз в год, аккумулировании фак­тически полученный доход в конце года включает начисленные в году проценты. В связи с этим различают годовую номиналь­ную и годовую фактическую (эффективную) процентные ставки.

    Годовая фактическая ставка - это годовая ставка, учитыва­ющая начисленные сложные проценты. Расчет годовой факти­ческой ставки ведется как процентное отношение дохода к ка­питалу в конце года, к величине капитала в начале года; в прак­тике фактическую ставку называют эффективной.



    Вторая функция сложного процента - это будущая стоимость п-периодного аннуитета. Рассмотрим серию равновеликих и рав­номерных платежей (вкладов) под процент на определенное ко­личество периодов, при том что в каждом периоде производятся вклады капиталов (РМТ) одной и той же величины (серия вкла­дов - аннуитет). Этот поток платежей и есть аннуитет.

    Наращенная сумма ренты (n-периодного аннуитета) пред­ставляет собой сумму всех членов ренты с начисленными на них процентами к концу ее срока.

    Аннуитет называется обычным, если платежи осуществляются в конце каждого периода (рента пост- нумерандо), и авансовым, если платежи осуществляются в нача­ле каждого периода (рента пренумерандо).

    Наращенная сумма рен­ты n-периодного аннуитета будет равна:

    где (1 + i) n – 1/f = F 2 - вторая функция сложного процента.

    В финансовых расчетах последнее выражение также называ­ют фактором фонда накопления или будущей стоимостью п- периодного аннуитета с платежом в одну денежную единицу (см. таблицу сложных процентов Инвуда).

    В отличие от обычного аннуитета при авансовом аннуитете (пренумерандо) первый платеж осуществляется в начале перво­го периода, т. е. он приносит доход в течение всех n-периодов. Каждый последующий платеж работает на один период меньше, чем предыдущий, наконец, последний платеж приносит доход в течение только одного периода. Как и в случае обычного анну­итета, будущие стоимости каждого платежа образуют геометри­ческую прогрессию со знаменателем (1 + i), а первый член этой прогрессии - РМT(1 + i). Используя формулу расчета суммы и членов геометрической прогрессии, получим:

    В этом случае фактор фонда накопления F 2 (будущая сто­имость авансового аннуитета с платежом в одну денежную еди­ницу) будет равен:



    Третья функция сложного процента(обратная второй) - фак­тор фонда возмещения капитала. Из второй функции имеем:

    Где i/(1+i) n –1 = F 3 - фактор фонда возмещения, третья функция сложного

    процента.

    Коэффициент F 3 показывает денежную сумму, которую не­обходимо вносить в конце каждого периода для того, чтобы че­рез определенное число периодов остаток на счете составил одну денежную единицу; причем данный фактор учитывает получае­мый по взносам процент.

    Можно сравнить фактор фонда накопления F 2 и фактор фонда возмещения F 3 Видно, что функция F 3 при фиксированных n и i есть величина, обратная фактору фонда накопления F 2 т.е.

    Сравнивая фактор фонда накопления (будущую стоимость авансового аннуитета с платежом в одну единицу) и фактор аван­сового фонда возмещения, получим соотношение:

    Четвертая функция сложного процента (обратная первой) - это текущая стоимость будущего денежного потока, т.е. текущая стоимость денег (инвестиций), PV определится из выражения:

    Где 1/ (1+i) n = F 4 - четвертая функция сложного процента, текущая стоимость будущей единицы.

    Сравнивая полученную формулу с фактором первой функции, видим:

    Процесс пересчета будущей стоимости денежной суммы (по­тока денег); FV в настоящую называется дисконтированием, а ставка, по которой осуществляется дисконтирование, часто на­зывают ставкой дисконта.

    C по­мощью функции F. можно ответить на два вопроса:

    1. Сколько будет стоить сегодня сумма, которую получит ин­вестор через л-периодов?

    2. За сколько нужно купить объект (сколько нужно вложить в объект), чтобы в результате будущей его продажи через n-пе­риодов обеспечить требуемую норму дохода на?

    Пятая функция сложного процента - это текущая стоимость аннуитета. Как и предыдущая, данная функция связана с про­цессом дисконтирования. Пятая функция определяет текущую стоимость серии равномерных равновеликих поступлений де­нежных средств в течение n-периодов с учетом заданной суммы. Современная величина потока платежей PV - это сумма всех его членов (аннуитетов), уменьшенная (дисконтированная) на величину процентной ставки на конкретный момент времени. Текущая стоимость может быть обычного аннуитета или аван­сового n-периодного аннуитета

    где PV - представляет собой сумму я членов геометрической прогрессии со знаменателем 1/1+i и первым членом PMT/1+c

    Отсюда, пользуясь известной формулой суммы членов гео­метрической прогрессии, получим уравнение:

    Где1 – (1+i) n / i= F 5 - пятая функция сложного процента, текущая стоимость " обычного аннуитета.

    Авансовый аннуитет построен таким образом, что первый пла­теж РМТ 1 в потоке доходов производится немедленно, а последу­ющие платежи - через равные промежутки времени. Так как РМТ 1 производится в начальный момент времени, дисконтировать его не нужно. Последующий же я - 1 платеж и другие дисконтируют­ся с учетом того, что k-й платеж производится через k - 1 перио­дов от начального момента.

    В данном случае сумма стоимости всех n-платежей - это

    геометрическая прогрессия со знаменателем 1/1+i и первым чле­ном PMT.

    Тогда текущая стоимость авансового аннуитета будет равна:

    Если РМТ = 1, то получим выражение для фактора текущей стоимости авансового аннуитета F " 5:

    Функции F 5 и F " 5 имеют особое значение в статистических расчетах, в оценке инвестиционных проектов, имущества, при­носящего доход.

    Шестая функция сложного процента (обратная к 5-й) в прак­тике экономико-финансовых вычислений имеет название ипо­течная постоянная, или размер платежей для покрытия долга. По известной текущей стоимости (размеру кредита) определя­ется размер платежей:

    Для PV = 1 получим значение взноса на амортизацию де­нежной единицы - это и есть шестая функция сложного про­цента - F 6 (ипотечная постоянная).

    Для обычных взносов (рента постнумерандо) шестая функ­ция имеет вид:

    Для авансовых взносов (рента пренумерандо) шестая функ­ция имеет вид:

    Каждый равновеликий взнос РМТ включает сумму процент­ных денег I nt и уплату первоначальной суммы PRN - суммы основного долга: РМТ=PRN +I nt

    Нужно подчеркнуть, что ипотечная постоянная функция F 6 связана с функцией F 3 следующим образом: F 6 =F 3 +i т.е. ипотечная постоянная - это взнос на амортизацию капита­ла, равный сумме фактора фонда возмещения F 3 и ставки про­цента на капитал i.

    Равномерно-аннуитетный метод возврата основных средств (метод Инвуда). Платежи РМТ идут в конце периода равными долями с увели­чивающимися размерами PRN возврата основной суммы долга и с уменьшающимися начислениями процентов i - доходов.

    Равномерно-прямолинейный метод (метод Ринга). Чистый операционный доход равномер­но снижается при постоянной норме возврата основного долга PRN, а доход I nt равномерно уменьшается. В отличие от метода Ринга метод Инвуда основан на том, что ипотечная постоянная равна сумме фактора фонда возмещения F 3 и ставки капитализации i.

    Шестая функция сложного процента широко применяется в экономическом обосновании лизинговых операций.

    Понравилась статья? Поделитесь с друзьями!
    Была ли эта статья полезной?
    Да
    Нет
    Спасибо, за Ваш отзыв!
    Что-то пошло не так и Ваш голос не был учтен.
    Спасибо. Ваше сообщение отправлено
    Нашли в тексте ошибку?
    Выделите её, нажмите Ctrl + Enter и мы всё исправим!