Все для предпринимателя. Информационный портал

Основные объемно планировочные параметры промышленных зданий. Конструктивные решения промышленных зданий

→ Архитектура промышленных зданий

Объемно-планировочные решения вспомогательных зданий и помещений


Ниже приводятся планировочные и нормативные данные по помещениям вспомогательных зданий.

Гардеробные предназначены для хранения уличной, домашней и специальной одежды. При производственных процессах групп I и II гардеробные должны быть общими для всех видов одежды. Гардеробные, предназначенные только для уличной одежды, а также гардеробные для уличной и домашней одежды могут быть общими для всех групп производств. Для хранения раз личных видов одежды должны предусматриваться шкафы, запираемые или открытые с оборудованными отделениями. Согласно СНиП II-92-76 отделения шкафов (в осях) должны быть глубиной 50 см, высотой 165 см, шириной 25…40 см.

Рис. 1. Решения планировки и оборудования гардеробных:
а - общий вид; б - типы и размеры шкафов, вешалок и проходов между ними

В гардеробных (кроме помещений с производственными процессами группы 1а) должны предусматриваться скамьи шириной 25 см, располагаемые у шкафов по всей длине их рядов.

Нормы проектирования гардеробных изложены в СНиП II-92-76.

Душевые следует размещать смежно с гардеробными. При душевых предусматривают преддушевые, предназначаемые для вытирания тела и переодевания, оборудованные вешалками для полотенец и скамьями. Душевые оборудуют открытыми кабинами, ограждаемыми стрех сторон, а при производственных процессах групп III и IV6 - открытыми кабинами, ограждаемыми с двух сторон, со сквозными проходами. Душевые кабины могут быть и закрытыми. Душевые кабины отделяют друг от друга перегородками из влагостойких материалов высотой от пола 1,8 м, не доходящими на 0,2 м до пола. Размещать душевые и преддушевые у наружных стен не допускается.

Размеры (в плане) открытых душевых кабин должны быть 0,9 х 0,9 м, а закрытых- 1,8×0,9 м, при этом размеры мест для переодевания должны приниматься 0,6×0,9 м. Душевые кабины оборудуют, как правило, индивидуальными смесителями холодной и горячей воды с арматурой управления, расположенной у входа в кабину. Полы душевых помещений должны иметь лотки для стока воды из душевых кабин. Ширину лотка принимают не менее 200 мм, глубину лотка в начале уклона - не менее 20 мм, уклон лотка - не менее 1%. Количество душевых сеток определяют по расчетному количеству человек на одну душевую сетку, работающих в наиболее многочисленной смене.

Умывальни размещают, как правило, смежно с гардеробными специальной одежды или общими гардеробными.

Рис. 2. Пример решения планировки и оборудования душевой:
а - зальной системы; 6 - секционные кабины; в - фрагмент помещения; г - габариты кабин и проходов между ними

В зависимости от характера производства до 40% расчетного количества умывальников допускается размещать в производственных помещениях вблизи рабочих мест. Умывальники могут быть одиночные или групповые. Расстояние между осями кранов умывальников в ряде случаев принимают не менее 0,65 м. Ширина проходов между рядами умывальников должна быть равна 2 м при количестве умывальников в ряду 5 и более; 1,8 м - при количестве менее 5. Количество кранов в умывальниках следует принимать по количеству работающих в наиболее многочисленной смене по СНиП II-92-76.

Гардеробные, душевые и умывальни могут быть соединены в гардеробные блоки. Исходя из учета условий универсальности решения гардеробного блока для различных групп производственных процессов и удобства перемещения в блоке лучшими являются варианты зальной схемы.

Уборные в многоэтажных производственных зданиях должны быть на каждом этаже. Размещать их через один этаж допускается лишь в том случае, если число работающих на двух смежных этажах не превышает 30 человек, причем располагать их следует на этаже с большим числом работающих. Расстояние от рабочих мест до уборных в зданиях не должно превышать 75 м, а до уборных на территории предприятий- 150 м. Входы в уборные следует устраивать через тамбуры (шлюзы) с самозакрывающимися дверями.

Уборные оборудуют, как правило, напольными чашами или унитазами без сидений; в мужских уборных предусматривают, кроме того, писсуары. Количество санитарных приборов в женских и мужских уборных должно приниматься в зависимости от числа пользующихся уборной в наиболее многочисленной смене из расчета 15 человек на один санитарный прибор. Напольные чаши и унитазы размещают в отдельных кабинах с дверями, открывающимися наружу. Кабины отделяют перегородками высотой 1,8 м, не доходящими до пола на 0,2 м. Размеры (в плане) кабины или уборной на одну напольную чашу или унитаз принимают 1,2×0,9 м. В случае установки в кабинах отопительных приборов или другого оборудования размеры кабины должны быть соответственно увеличены.

Рис. 3. Примеры планировочных решений помещений умывальных и их оборудования:
а - с прямобортными умывальниками с размерами 6×6 и 6×3 м: б - то же, с групповыми круглыми; в - габаритные размеры умывальников и проходов между ними

Рис. 4. Вариант планировки гардеробного блока зальной системы,
а - шириной 24 м; б - то же, 36 м

Писсуары применяют индивидуальные настенные или напольные. Писсуарные лотки должны быть облицованы глазурованными плитками и оборудованы устройствами непрерывного смывания. Ширина лотков должна быть не менее 300 мм, уклон к трапам - не менее 1%. Глубину лотка в начале уклона принимают равной 50 мм. Расстояние между осями настенных писсуаров следует принимать 0,7 м.

Помещения для личной гигиены женщин. При количестве женщин, работающих в наиболее многочисленной смене, от 15 до 100 следует предусматривать помещение для гигиенического душа размером в плане 2,4х1,2 м, размещаемое в- женской уборной, со входом в него из тамбура уборной. При числе женщин более 100 это помещение следует располагать смежно с женскими уборными. Количество процедурных кабин принимают из расчета одна кабина на 100 женщин. Размеры кабин-1,8×1,2 м.

В местах для раздевания предусматривают скамьи, над которыми должно быть по два крючка. Количество мест для раздевания определяют из расчета три места на одну кабину, а площадь - из расчета 0,7 м2 на одно место.

С целью более совершенной организации внутреннего пространства администра-тивно-бытовых помещений, достижения наилучших условий труда и отдыха, а также соответствующего уровня интерьера рекомендуется: применять гибкую планировку типовых этажей с разделением рабочих помещений сборно-разборными перегородками; отдельные помещения, близкие по своему функциональному назначению, объединять в крупные помещения так называемого зального типа; стремиться к взаимосвязи интерьеров отдельных помещений и внутреннего пространства помещений с внешним.

Курительные помещения следует предусматривать в случаях, когда по условиям производства или пожарной безопасности курение в производственных помещениях или на территории предприятий не допускается, а также при объеме производственного помещения на одного работающего менее 50 м3. Их следует размещать смежно с уборными или с помещениями для отдыха. Расстояние от рабочих мест до курительных в здании не должно превышать 75 м, а до курительных на территории предприятий - 150 м. Площадь курительных помещений определяют из расчета на одного работающего в смене - 0,03 м2 для мужчин и 0,01 м2 для женщин, но в целом не менее 9 м2.

Рис. 4. Планировочные решения уборных:
а, б - варианты; в - нормативные габариты кабин и проходов

Площадь помещений для отдыха принимают из расчета 0,2 м2 на одного работающего в наиболее многочисленной смене, но не менее 18 м. Расстояние от рабочих мест до помещений отдыха принимают не более 75 м.

При разработке планировочных элементов административно-конторских помещений и конструкторских бюро одним из главных требований является наилучшее расположение рабочих мест и их естественное освещение (рис. 5, а, б). Состав и площади этих помещений должны устанавливаться в заданиях на проектирование; их следует принимать по СНиП II-2-76. На рис. 6 приведен пример планировочного решения бытовых и конторских помещений.

Рис. 5. Примеры планироврчных решений адми-нистративно-хозяйственныхи конструкторских помещений при глубине 12 и 18 м

Рис. 6. Пример планировки бытовых помещений:
а,б - первый и второй этажи; 1 - вестибюль; 2- буфет; 3- комнаты кормления ребенка; 4 - кладовая; 5 - комната ожидания; 6 - АТС; 7 - цехком; 8 - бойлерная; 9 - комната комитета ВЛКСМ; 10 - партком; 11-ткацкая фабрика; 12 - комнаты отдыха; 13 - дежурного и 14 - начальника отдела кадров; 15 - табельная; 16 - проходная; 17-вентиляционная камера; 18 - комнаты обеспыливания одежды; 19 - грязного и 20 - чистого белья; 21 - фотарий; 22 - мендпункт; 23,24 - женский гардероб рабочей и домашней одежды; 25-комната дежурного персонала; 26--комната для сушки волос; в - вариант планировки с сеткой колонн 6×9 м при ширине 36 м; 1 - место для сушки волос и глажения одежды; 2 -мужской гардероб домашней и рабочей одежды на 1540 шкафов; 3,4 - ножные ванны и электрополотенца; 5 - 55 вентилируемых шкафов

Рис. 7. Примеры планировок столовых:
а, б -план второго и первого этажей столовой на 250 мест; 1- помещение шеф-повара; 2- доготовочная: 3 - кухня; 4 - мойки; 5 - обеденный зал; 6 - конторы и комнаты персонала; 7 - кладовая; 8 - вентиляционная камера; 9 - камера охлаждения; 10 - кабинет врача; 11 - диетстоловая; 12 - вестибюль

Рис. 8. Планировка первого этажа бытовых помещений кузнечного цеха автозавода легковых автомобилей:
1 - кузнечный цех; 2 - вентиляционная камера; конструкторские помещения

Помещения общественного питания. На предприятиях при количестве работающих в наиболее многочисленной смене в 200 человек и более следует предусматривать столовые, как правило, доготовочные. Если количество работающих в смене менее 200 человек, предусматривают столовые-раздаточные (буфеты) с отпуском горячих блюд, доставляемых из столовых. Расстояние от рабочих мест до столовых не должно превышать 300 м.

Количество обеденных мест в столовых следует принимать из расчета одно место на четыре человека, работающих в наиболее многочисленной смене. Площадь помещений для приема пищи должна определяться из расчета 1 м2 на каждого посетителя, но не менее 12 м2. Подсобные помещения оборудуют кипятильниками, умывальниками и электрическими плитками.

Рис. 9. Вариант решения четырехэтажного административно-бытового корпуса автомобильного завода:
а, б, в и г - планы этажей

В столовых и буфетах предусматривают умывальники с подводкой горячей и холодной воды, а также уборные (с умывальниками в шлюзах) из расчета одна напольная чаша или один унитаз на 100 мест в столовой.

Рассмотрим конкретные примеры планировочных решений бытовых помещении при размещении их в пристройках и отдельно стоящих вспомогательных зданиях. На рис. 8 приведен вариант решения бытовых помещений кузнечного цеха Волжского автозавода, разработанный Промстройпроектом с сеткой колонн 6×9 м при ширине здания 18 м.

Ппанировка административно-бытового корпуса Московского завода малолитражных автомобилей с размерами в плане 42 х 42 м при сетке колонн 6×6м представлена на рис. 9.

Принятые в практике более крупные размеры корпуса повышают планировочную гибкость решения.

При разработке архитектурно-планировочного и композиционного, решения вспомогательных зданий и помещении важное значение имеет выполнение требований эвакуации: определение количества и расположения входов, лестничных клеток, вестибюлей и всех коммуникационных помещений. Эвакуационных выходов из вспомогательных зданий и помещений независимо от их размещения должно быть не менее двух. Если в принятом планировочном и объемном решениях лестничная клетка выходит на задний фасад, то она должна иметь свой выход. В этом случае общее число выходов должно обязательно превышать чиспо лестничных клеток.

Рис. 10. Варианты расположения лестничных клеток в зависимости от планировочного решения зданий:
1 - вестибюль; 2 - гардеробные блоки; 3 - помещения различного назначения

Объемно-планировочное решение здания (ОПР) Расположение (компоновка) помещений

Расположение (компоновка) помещений заданных размеров и формы в едином комплексе, подчиненное функциональным, техническим, архитектурно-художественным и экономическим требованиям, называется объемно-планировочным решением здания (ОПР) .

Весь внутренний объем здания разделяется горизонтальными (междуэтажными перекрытиями) и вертикальными (стенами и перегородками) конструкциями на отдельные помещения.

Помещения по способу их связи между собой могут быть непроходными (изолированными) и проходными (неизолированными). Непроходные помещения сообщаются между собой с помощью третьего помещения, обычно одного из коммуникационных (коридора, лестничной клетки и др.).

По признакам расположения и взаимосвязи помещений различают несколько объемно-планировочных систем зданий:

анфиладная ;

система с горизонтальными коммуникационными помещениями ;

зальная ;

атриумная ;

секционная ;

смешанная (комбинированная ).

Если помещения соединяются друг с другом непосредственно через проемы в стенах или перегородках, то такой прием называется анфиладной системой планировки (см. рис. 2.1). Эта система позволяет создать здание очень компактной и экономичной структуры в связи с отсутствием (или минимальным объемом) коммуникационных помещений. Все основные помещения в здании при анфиладной системе являются проходными, поэтому она применима лишь в зданиях преимущественно экспозиционного характера (музеях, картинных галереях, выставочных павильонах), либо частично в отдельных элементах здания, например, между помещениями одной воспитательной группы в детском дошкольном помещении.

Рис. 2.1. Анфиладная система планировки

Система с горизонтальными коммуникационными помещениями предусматривает связь между основными помещениями здания через коммуникационные помещения (коридоры, открытые галереи). Это позволяет основные помещения проектировать непроходными. При этом помещения могут быть расположены по одну (рис. 2.2 а ) или по обе стороны коридора (рис. 2.2 б ). При одностороннем расположении помещений коридор имеет хорошую освещенность естественным светом, которая в некоторых случаях необходима, например, в школах, где коридор одновременно служит в качестве рекреационного помещения.

Рис. 2.2. Система планировки с горизонтальными коммуникационными помещениями

а – галерейная; б – коридорная

1 – открытая галерея; 2 – закрытый коридор; 3 – рабочие или жилые помещения

Планировочная компактность и экономичность решения здания с горизонтальными коммуникациями оценивается количеством площади основных и вспомогательных помещений здания на единицу площади или длины коммуникационных помещений. По этому признаку наиболее экономичны схемы с двумя параллельными или кольцевыми коридорами. Системы планировки с горизонтальными коммуникационными помещениями широко применяется в проектировании гражданских зданий самого различного назначения – общежитий, гостиниц, школ, больниц, административных зданий и т.п.

Недостатком одностороннего расположения помещений является увеличение подсобной площади в здании и периметра наружных стен, что ухудшает экономическую характеристику объемно-планировочного решения.


Зальная система планировки предусматривает одно большое (главное) помещение здания, как правило, определяющее его функциональное назначение (кинозал, спортивный зал и т.п.), вокруг которого группируются остальные необходимые помещения (см. рис. 2.3). Наиболее распространена эта система при проектировании зрелищных, спортивных и торговых зданий. Зальную систему применяют для зданий с одним или несколькими залами.

Рис. 2.3. Зальная система планировки

Атриумная система – с открытым или крытым двором (атриумом), вокруг которого размещены основные помещения, связанные с ним непосредственно через открытые (галереи) или закрытые (боковые коридоры) коммуникационные помещения (см. рис. 2.4).

Рис. 2.4. Атриумная система планировки

1 – атриум; 2 – коммуникационные помещения

Помимо традиционного использования в южном жилище она широко применяется в проектировании малоэтажных зданий с крупными залами (крытых рынках, музеях, выставочных комплексов, школ), а также многоэтажных гостиниц и административных помещений.

Преимущества этой системы при открытых дворах – тесная связь между необходимыми по технологической схеме открытыми и закрытыми пространствами (в здании рынка – связь между торговыми залами и пространством сезонной торговли, в здании музея – между закрытой и открытой экспозицией).

Преимущества атриумной системы при закрытых дворах – создание круглогодично функционирующих общественных пространств и повышение теплоэкономичности здания в целом.

Секционная система заключается в компоновке здания из одного или нескольких однохарактерных фрагментов (секций) с повторяющимися поэтажными планами, причем помещения всех этажей каждой секции связаны общими вертикальными коммуникациями – лестницей или лестницей и лифтами. Секционная система – основная в проектировании многоквартирных жилых домов средней и повышенной этажности, отдельные фрагменты этой системы включаются в объемно-планировочную структуру зданий общежитий, больниц, некоторых административных помещений и др.

Рис. 2.5. Секционная система планировки

1 – блок-секции; 2 – вертикальные коммуникации (лестнично-лифтовые узлы)

Некоторые многофункциональные здания имеют смешанную систему планировки , поскольку в здании объединяются помещения для различных функциональных процессов (главных и подсобных). Так, например, в здании крупного физкультурно-оздоровительного комплекса зальная система спортивных залов сочетается с коридорной планировкой помещений для занятий в спортивных секциях и кружках (см. рис. 2.6).


Рис. 2.6. Смешанная система планировки

1 – зальная система; 2 – коридорная система


Как правило, требованиям удобства отвечает наиболее компактное размещение помещений с кратчайшими путями движения людей и средств транспорта, без взаимных их пересечений и встречного движения. Чем короче пути движения и, следовательно, меньше по площади коммуникационные помещения, тем меньше объем здания и ниже его стоимость.

Помещения, связанные функциональным или технологическим процессом, должны располагаться возможно ближе друг к другу. Это условие особенно важно для производственных предприятий, где протяженность путей движения предметов производства влияет не только на объем здания, но и на стоимость продукции. Не менее важно для производственных и общественных зданий отсутствие пересечений людских потоков, а пересечение людских потоков с грузовыми вообще недопустимо как по технологическим условиям, так и по условиям безопасности.

Разработка объемно-планировочного решения (ОПР) осуществляется на основе схемы функциональных процессов, происходящих в здании (функциональной илитехнологической схемы ). Она представляет собой условное графическое изображение группировки помещений и функциональных связей между ними. Например, в здании театра помещения группируются, как правило, по однородным функциональным признакам. Артистические помещения группируются близ сцены, с которой должна быть обеспечена удобная связь, а к зрительному залу примыкают фойе и кулуары, представляющие группу помещений с однородным функциональным процессом (см. рис. 2.7).

При значительной сложности составления (например, при проектировании промышленных зданий со сложным технологическим процессом – сборочных конвейеров автозаводов и т.п.) функциональная или технологическая схема разрабатывается специалистом-технологом совместно с архитектором.


Рис. 2.7. Функциональная схема здания театра

При группировке помещений согласно функциональной схеме и определении целесообразных связей между ними параллельно выявляют целесообразность организации связей по горизонтали или по вертикали в соответствии с выбранной этажностью.

Проектирование здания, т.е. компоновку помещений, удобно вести, пользуясь сеткой разбивочных осей. Размеры пролетов и шагов определяются, сообразуясь с размерами и желательными пропорциями помещений и размерами (по каталогу) типовых несущих конструкций перекрытий и покрытий. Затем, учитывая заданную площадь помещений, намечается их размещение.

Основная форма помещений в плане – прямоугольная, хотя возможны и другие, более сложные формы. Компоновка помещений должна отвечать функциональным, техническим, архитектурно-художественным и экономическим требованиям.

Форма здания в плане обычно также прямоугольная или состоит из нескольких связанных между собой прямоугольных частей. Возможны и другие сложные формы. Например, для общественных зданий с залами форма плана и здания в целом определяется особенностями функционального процесса.

Объемное решение, являющееся основой архитектурной композиции здания, определяется его формой в плане, а также количеством этажей и формой покрытия.

Этажность здания зависит от его назначения, экономических соображений, градостроительных требований и природных данных строительной площадки. В том случае, когда функциональный процесс может осуществляться в любых зданиях, этажность выбирается на основании сопоставления вариантов сих технической, экономической и архитектурно-художественной оценкой.

Малая этажность зданий школ, детских садов-яслей обусловлена, например, стремлением максимально избежать передвижения детей по лестницам. Кинотеатры, магазины, музеи, вокзалы и т.п. целесообраз­но размещать в зданиях малой этажности, чтобы не затруднять людей хождением по лестницам, облегчить эвакуацию людей в случае пожара, не создавать больших нагрузок на перекрытия. Производственные цехи с тяжелым и громоздким оборудованием или установками, вызывающими динамические нагрузки, желательно располагать в одноэтажных зданиях.

Нередко этажность здания зависит от этажности соседних построек или утвержденной генеральным планом застройки данного района города для достижения его архитектурного единства (здания должны находиться в контексте с окружающей застройкой).

На выбор этажности также влияют местные усло­вия: рельеф площадки, гидрогеологические характеристики грунтов. При рельефе с большими уклонами, а также при слабых грунтах целесообразно повышение этажности, чтобы уменьшить затраты на земляные работы и на устройство фундаментов. Одноэтажные здания с большими размера­ми в плане в целях уменьшения объема земляных работ целесообразно располагать только на площадках с пологим рельефом.

При проектировании многоэтажного здания помещения обычно группируются с учетом предполагаемой этажности так, чтобы площади этажей были одинаковы.

Многие здания независимо от назначения имеют однотипные отдельные помещения и их группы – архитектурно-планировочные элементы (главный вход в здание, лестница, транспортные узлы, санитарно-технические узлы). Их планировочное решение и размещение в здании оказывает существенное влияние на компоновку плана здания в целом.

Каждое здание, как правило, имеет главный вход и обычно несколько второстепенных (служебных ) входов . Через главный вход проходят основные массы людей, участвующих в функциональном процессе; второстепенные входы обычно обслуживают подсобные функциональные процессы, а также являются запасными эвакуационными выходами.

Главный вход в здание должен быть хорошо виден при приближении к нему. Входная площадка обычно защищается навесом от атмосферных осадков. Для защиты от проникания холодного воздуха у наружных дверей устраиваются небольшие помещения – тамбуры . Для климатической зоны, в которой находится Нижегородская область, достаточно применение обычного одинарного тамбура. Для северных регионов (при более низкой температуре наиболее холодной зимней пятидневки) обязательно применение двойного тамбура. Более подробно эти требования для жилых, общественных и промышленных зданий будут рассмотрены в соответствующих курсах.

Далее располагается вестибюль и гардероб . Вестибюль – это коммуникационное помещение с распределительными функциями, откуда потоки людей направляются в коридоры, на лестницы, к подъемникам. Площадь гардероба и вестибюля зависит от количества пользующихся ими людей. При входном узле обычно располагаются некоторые помещения обслуживающего назначения (комнаты охраны , торговые киоски , санитарные узлы и т.п.).

Для сообщения между этажами здания устраиваются лестницы и подъемники периодического (лифты ) или непрерывного (эскалаторы ) действия. В зданиях с большими людскими потоками применяются эскалаторы, т.е. движущиеся лестницы, а вместо лестниц – пандусы , т.е. наклонные пологие поверхности без ступеней.

Лестница, по которой направляется основной поток людей, считается главной и отличается от других лестниц большими размерами и меньшим уклоном. Остальные лестницы называются второстепенными и служебными (если связаны с подсобным функциональным процессом). Ширина лестничных маршей и лестничных площадок зависит от этажности, значимости лестницы и числа пользующихся лестницей. Для безопасности движения ширина марша основных эвакуационных лестниц должна быть не менее 1,05 м в секционных жилых домах, не менее 1,2 м – в коридорных жилых домах, не менее 1,35 м – в общественных зданиях. Во всех случаях ширина лестничной площадки не должна быть меньше ширины марша.

Уклон лестничных маршей (отношение вертикальной проекции марша к горизонтальной) зависит от количества этажей, значимости лестницы и принимается 1:2 ? 1:1,75. Этим уклонам соответствуют и размеры ступеней: высота (подступенок ) 160 ? 165 мм; ширина (проступь ) 300 ? 290 мм.

Пологие марши следует проектировать в лестницах многоэтажных зданий и на главных лестницах, а более крутые марши предусматриваются в малоэтажных зданиях и второстепенных лестницах. Для безопасности в случае пожара в многоэтажном здании должно быть не менее двух лестниц, заключенных в лестничные клетки, освещенные естественным светом и имеющие наружные выходы. Расстояния от наиболее удаленных помещений до эвакуационной лестницы или наружного выхода имеют строгие нормативные ограничения в зависимости от типа здания, его этажности, степени огнестойкости и др.

Наиболее распространенные и экономичные двухмаршевые лестницы. Однако могут быть и другие типы лестниц, например трехмаршевые, в которых в пределах этажа размещаются три марша, многомаршевые с различным расположением маршей, круглые (винтовые) лестницы. Более подробно конструктивное исполнение лестниц рассмотрено во второй главе данного Пособия.

Во всех зданиях, имеющих более 5 этажей, устраиваются лифты, как правило, располагаемые в пределах лестничной клетки или близ нее.

Расположение лестничных клеток и шахт лифтов в значительной степени влияет на планировку, поскольку они должны занимать одно и то же относительное положение в плане каждого этажа здания.

На планировку этажей влияет также положение санитарных узлов, кухонь и других помещений, которые всегда располагаются в этажах по одной вертикали друг над другом. Такое расположение значительно облегчает разводку в здании трубопроводов водоснабжения, газа и канализации. Кроме того, «мокрые» помещения (т.е. помещения, в которых возможна повышенная влажность воздуха и намокание конструкций) размещаются в здания компактно, чтобы не оказывать вредного влияния на другие помещения. Нежелательно также расположение «мокрых» помещений у наружных стен здания.

Вертикальные несущие конструкции (стены и колонны), так же как лестницы и шахты лифтов, должны пересекать все этажи, занимая одно и то же место в плане на каждом этаже. Только в отдельных случаях несущие стены и столбы верхних этажей могут опираться на горизонтальные несущие конструкции. Поэтому помещения с большими пролетами целесообразно располагать в верхних этажах или выносить их в одноэтажные части здания, чтобы не опирать на перекрытие большого пролета конструкции верхнего этажа.

Таким образом, экономичное решение конструктивной схемы оказывает существенное влияние и на общее планировочное решение здания.

Однако ведущим фактором в проектировании здания, определяющим его объемно-планировочное решение, остается функциональный процесс. Новые функциональные процессы или изменения существующих процессов обуславливают появление новых объемно-планировочных и конструктивных решений зданий.

На объемно-планировочное решение оказывают влияние и природные условия, в которых будет возводиться здание. Суровый климат предопределяет компактные объемы зданий с минимальной площадью наружных ограждений. В теплом климате, наоборот, целесообразны усложненные объемы зданий, дающие больше тени, способствующие связи помещений здания с окружающей природой.

Унификация - приведение к единообразию размеров объемно-планировочных параметров зданий и их конструктивных элементов, из­готовляемых на заводах. Унификация имеет целью ограничение числа объемно-планировочных параметров и количества типоразмеров изде­лий (по форме и конструкции). Осуществляют ее путем отбора наиболее совершенных решений по архитектурным, техническим и экономическим требованиям.
Типизация - техническое направление в проектировании и строительстве, позволяющее многократно осуществлять строительство разнообразных объектов благодаря применению унифицированных объ­емно-планировочных и конструктивных решений, доведенных до стадии утверждения типовых проектов и конструкций.
Типовые конструкции и детали, хорошо зарекомендовавшие себя в эксплуатации и включенные в каталоги типовых изделий, обязательны для применения.
Помимо изыскания оптимальных объемно-планировочных парамет­ров (пролет, шаг и высота) и конструктивных (сортамент строительных изделий), унификация и типизация должны устанавливать градации функциональных параметров: долговечности отдельных конструкций и зданий в целом, температурно-влажвостных и технологических режи­мов и т. п.
Типовые объемно-планировочные и конструктивные решения долж­ны позволять внедрять прогрессивные нормы и методы производства и предусматривать возможность развития и совершенствования техноло­гии производства. Здесь надо иметь в виду, что периоды перестановки и замены технологического оборудования весьма различны: для одних про­изводств они равны 3-4 годам, для других - 10 годам и более.
При разработке вопросов типизации и унификации учитывают также перспективы развития несущих конструкций (особенно большепролетных зданий), требования модульной системы, возможность обеспечения вы­разительного архитектурно-художественного облика зданий и технико- экономические показатели.
Таким образом, унифицированные объемно-планировочные и конст­руктивные решения не являются чем-то застывшим; они постоянно со­вершенствуются в связи с прогрессом в технологии строительного произ­водства, изменением норм проектирования и градостроительных требований.
Обеспечить взаимозаменяемость элементов можно при комплексном подходе к их конструированию. Необходимым условием взаимозаменяе­мости является выработка единой системы допусков изготовления и сборки конструкций вне зависимости от их материалов.
Примерами взаимозаменяемых конструкций могут служить замена металлических ригелей железобетонными или деревянными, покрытии с прогонами беспрогонными, стеновых блоков крупноразмерными панеля­ми и т. п. Взаимозаменяемыми должны быть панели наружных стен зда­ний, одинаковые по размерам, по теплотехническим и иным качествам, но выполненные из различных материалов.
Высшей формой унификации является создание универсальных конструкций и деталей, пригодных для различных объектов и конструк­тивных схем (например, использование колонн одного типоразмера в зданиях с различными пролетами, применение одних и тех же панелей для стен и покрытий и т. п.).
Подобно универсальным планировочным решениям, делающим зда­ния гибкими в технологическом отношении, универсальные конструкции и детали расширяют область их использования. Итак, основными задачами унификации и типизации являются:
уменьшение числа типов промышленных зданий и сооружении и создание условий для их широкого блокирования;
сокращение числа типоразмеров сборных конструкций и деталей с целью повышения серийности и снижения стоимости их заводского изго­товления;
рациональное членение конструкций на монтажные единицы и раз­работка несложных приемов их сопряжения и крепления;
создание лучших условий для использования прогрессивных техни­ческих решений.

Модульная система и параметры зданий
Унифицировать и типизировать объемно-планировочные и конструк­тивные решения зданий и сооружений можно на основе единой модуль­ной системы, позволяющей взаимоувязывать размеры здании и их эле­ментов.
В модульной системе обязателен принцип кратности всех размеров некоторой общей величине, называемой модулем. Для промышленного строительства установлен единый модуль М = 600 мм для вертикальных и горизонтальных измерений.
Целью применения модульной системы является обеспечение крат­ности размеров единому модулю и строгое ограничение числа типораз­меров конструкций и деталей зданий и сооружений. Поэтому при проек­тировании используют укрупненные (производные) модули, кратные единому модулю.
При назначении размеров объемно-планировочных компонентов ЦНИИпромзданий рекомендует принимать следующие укрупненные модули:
в одноэтажных зданиях для ширины пролетов и шага колонн - 10 М, а для высоты (от пола до низа опоры основных конструкций по­крытия пролетов) - 1 М;
в многоэтажных зданиях для ширины пролетов - 5 М, шага ко­лонн- 10 М и высоты этажей- 1 М и 2 М.
Ниже приведены размеры пролетов, шагов колонн и высот одно­этажных зданий, назначаемые в соответствии с основными положениями по унификации и с учетом габаритных схем.
Ширина пролетов: при отсутствии мостовых кранов - 12, 18, 24, 30 и 36 м (допускаются пролеты шириной 6 и 9 м); при наличии электриче­ских мостовых кранов - 18, 24, 30 и 36 м. По технологическим соображе­ниям ширина пролетов может быть и более 36 м, кратной 6 м.
Шаг колонн 6, 12 м и более, кратный 6 м. В многопролетных здани­ях шаг колонн в крайних и средних рядах может быть различным. Высота (от пола до низа опоры основных конструкций покрытия): 4,8; 5,4 и 6,0 м (т- е- кратно 0,6); 7,2; 8,4; 9,6; 10,8; 12,0; 13 2* 14,4; 15,6; 16,8 и 18,0 м (кратно 1,2 м)
При назначении и взаимной увязке размеров объемно-планировочных и конструктивных элементов обычно фигурируют номинальные раз­меры - расстояние между разбивочными осями здания, между услов­ными (номинальными) гранями строительных конструкций и деталей. Номинальные размеры всегда кратны модулю.
В отличие от номинальных конструктивные размеры чаще всего не являются модульными, и увязывают их с номинальными за счет толщины швов, зазоров, стыков (иногда доборных элементов или вставок). Так, при шаге колонн 6000 мм длину стеновых панелей принимают 5980 мм, в то время как номинальная длина их считается равной 6000 мм. Объемно- планировочные параметры конструктивных размеров не имеют.
Использование в проектировании укрупненных модулей дает возмож­ность укрупнять конструкции и детали, т. е. уменьшать число монтаж­ных элементов. Укрупнять сборные конструкции целесообразно и для обеспечения большей надежности их работы в здании или сооружении.

Конструктивные схемы зданий
По конструктивной схеме промышленные здания подразделяют на каркасные, бескаркасные и с неполным каркасом.
В бескаркасных одноэтажных зданиях, имеющих несущие стены, размещают небольшие цехи с пролетами до 12 м, высотой не более 6 м и при грузоподъемности кранов до 5 т. В местах опирания стропиль­ных конструкций стены с внутренней или наружной стороны усиливают пилястрами. Бескаркасные многоэтажные здания строят редко.
Основным типом промышленного здания является каркасное. Это объясняется наличием во многих промышленных зданиях больших сосредоточенных нагрузок, ударов и сотрясений от технологического и кранового оборудования, сплошного или ленточного остекления. Каркас одноэтажного промышленного здания представляет собой пространственную систему, состоящую из поперечных рам, объединен­ных в пределах температурного блока плитами покрытия, связями, иног­да подстропильными конструкциями и другими элементами.
Поперечные рамы состоят из колонн и стропильных конструкций (ригелей). Способ соединения ригеля с колоннами может быть жестким и шарнирным, а колонн с фундаментами, как правило- жестким. Шар­нирное соединение ригелей с колоннами способствует их независимой типизации.
Применяемый в многоэтажных зданиях сборный железобетонный каркас решается обычно в виде рам с жесткими узлами. Возможно при­менение рамно-связевой системы, в которой жесткие поперечные рамы воспринимают вертикальные нагрузки, а связи, лестничные клетки и лиф­товые шахты- горизонтальные нагрузки, действующие в продольном направлении.
В каркасных зданиях все вертикальные и горизонтальные нагрузки воспринимают элементы каркаса, а стены (самонесущие, навесные и иногда подвесные) выполняют роль ограждения.
Наличие каркаса в ка­честве несущего остова позволяет наилучшим образом обеспечить прин­цип концентрации высокопрочных строительных материалов в наиболее ответственных несущих конструкциях зданий.
Каркасная конструктивная схема обеспечивает свободную плани­ровку помещений, максимальную унификацию сборных элементов и наиболее экономичное решение как одноэтажных, так и многоэтажных здании. имеющие два и более пролетов, бескрановые или с кранами небольшой грузоподъемности, иногда проектируют с неполным каркасом. В таких зданиях пристенные колонны отсутствуют, а наружные сте­ны выполняют несущие и ограждающие функции.

Технико-экономическая оценка зданий
Разместить одно и то же производство можно в зданиях с различ­ными объемно-планировочными и конструктивными решениями. Задан­ные санитарно-гигиенические и бытовые условия также могут быть до­стигнуты несколькими способами. Задачей проектировщиков является выбор такого варианта из намеченных, при котором производство про­дукции, максимально удовлетворяя всем условиям, отвечало бы требо­ваниям экономической эффективности использования средств.
По каждому намеченному варианту проектируемого здания состав­ляют технико-экономические показатели, сопоставляя которые выбирают самый эффективный из них. В отдельных случаях показатели сравнивают с эталоном аналогичного производства или с данными действующих предприятий.
Технико-экономическую оценку объемно-планировочных и конструк­тивных решений промышленных зданий производят по указанным ниже характеристикам, исчисляемым раздельно для производственных и административно-бытовых помещений.
Полезную площадь Sп определяют как сумму площадей всех этажей, измеренных в пределах внутренних поверхностей наружных стен, за вычетом площадей лестничных клеток, шахт, внутренних стен, опор и перегородок. В полезную площадь производственного здания включают площади антресолей, этажерок, обслуживающих площадок и эстакад.
Рабочую площадь Яр производственного здания определяют как сумму площадей помещений, располагаемых на всех этажах, а также на антресолях, обслуживающих площадках, этажерках и прочих помеще­нии, предназначаемых для изготовления продукции. В рабочую площадь бытовых помещений включают площади помещений, предназначаемых для обслуживания рабочих (гардеробные, душевые, уборные, умываль­ные, курительные и т. д.).
Площадь застройки Sз определяется в пределах внешнего пери­метра наружных стен на уровне цоколя зданий. Конструктивную площадь Sк определяют как сумму площадей сечения всех конструктивных элементов в плане здания (колонн, стен) Подсчитывают площадь наружных стен и вертикальных ограж­дений фонарей По.
Объем здания V исчисляется умножением измеренной по внешне­му контуру площади поперечного сечения (включая фонари) на длину здания (между внешними гранями торцовых стен). Объем подвальных и полуподвальных этажей исчисляют умножением площади застройки на высоту этих этажей.
Определяют стоимость здания (С), затраты труда на возведение (3), массу здания {В), расход основных строительных материалов (М), объем сборного железобетона (Ж). Указанные характеристики подсчитывают для всех вариантов проек­тируемого здания. Для анализа и окончательного выбора наиболее эко­номичного из вариантов определяют показатели Ки К2, « »
Коэффициент K1, характеризующий экономичность объем но-плани­ровочного решения, вычисляют как отношение объема здания к полезной площади. Чем ниже значение этого показателя, тем экономичнее объ- емно-планировочное решение здания.
Коэффициент К2, характеризующий целесообразность планировки, определяют отношением рабочей площади к полезной. Чем выше значе­ние К2, тем экономичнее планировка.
Коэффициент Дз, характеризующий насыщение плана здания стро­ительными конструкциями, определяют отношением конструктивной пло­щади к площади застройки. Чем ниже этот показатель, тем экономичнее решение.
Коэффициент Ki характеризует экономичность формы здания и опре­деляется отношением площади наружных стен и вертикальных ограж­дений фонарей к полезной площади. Чем ниже здание Ка, тем эконо­мичнее форма здания.
Коэффициент Къ выражает стоимость единицы рабочей площади или объема здания.
Коэффициент характеризует расход основных материалов на еди­ницу рабочей площади или объема здания (металла и цемента в кг, бе­тона и железобетона в м3, леса в м3 в переводе на круглый лес и других материалов).
Коэффициент К? отражает экономичность конструктивного решения здания и определяется отношением массы здания к единице рабочей площади или объема.
Коэффициент Кв характеризует трудоемкость, приходящуюся на еди­ницу площади или объема здания.
Коэффициент К9 отражает сборность здания и определяется отноше­нием стоимости сборных конструкций и их монтажа к общей стоимости здания.

Особенности универсальных зданий
Объемно-планировочное и конструктивное решения промышленного здания, как отмечалось, определяются характером технологического про­цесса. Изменения технологии, вызываемые совершенствованием способов производства и оборудования, сменой номенклатуры и повышением тре­бований к качеству продукции, а также экономическими факторами, ча­сто влекут за собой переустройства зданий заводских цехов.
В современном производстве в различных отраслях промышленности периоды модернизации технологии колеблются в пределах от 2-3 до 20-25 лет. При этом часто изменяются и габариты технологического оборудования.
Следовательно, промышленные здания, запроектированные только на заданный технологический процесс, в результате непрерывного техни­ческого прогресса через несколько лет требуется реконструировать. При этом неизбежны большие материальные затраты, а отдельные цехи вы­ходят на долгое время из эксплуатации.
Переустройства и реконструкция зданий для приспособления их к измененной технологии производства часто необходимы и в тех случаях,: когда здания еще имеют нормальное физическое состояние и могли бы служить десятки лет. Иначе говоря, здание, перестав удовлетворять тре­бованиям новой технологии производства, считается морально устарев­шим или изношенным.
Срок морального износа промышленного здания (период соответст­вия его модернизированному производству) можно определить ориенти­ровочно на основе анализа развития данного производства с учетом тем­пов развития промышленности в будущем. Срок физического износа зда­ния подсчитывают более точно, так как он регламентируется степенью капитальности здания. Наиболее экономичными здания будут в том слу­чае, когда предельно сближены сроки их морального и физического износа. После этого периода эксплуатации здание должно подлежать сносу или коренной реконструкции.
При современных темпах развития социалистической промышлен­ности наиболее целесообразны здания, легко приспособляемые к измене­ниям технологии производства или позволяющие размещать в них раз­личные производства без нарушения архитектурно-строительной основы. Такие здания, впервые разработанные советскими инженерами, получили название «гибких» или универсальных. Универсальные промышленные здания практически не претерпевают морального износа и поэтому их проектируют высокой капитальности, обеспечивающей длительный срок- эксплуатации.
Главной особенностью гибких или универсальных зданий является коупненная сетка колонн. Меньшее количество внутренних опор позво­ляет облегчить процесс модернизации технологии, расставлять оборудо­вание более экономно, организовать технологический поток вдоль или поперек пролетов, улучшить условия труда в цехах. Кроме того, резкое уменьшение количества несущих элементов здания позволяет уменьшить трудоемкость и сократить сроки строительства, а в отдельных случаях и снизить стоимость зданий.

Для каждой отрасли производства применяют свои унифицированные параметры промышленных зданий. Современное строительство ориентируется на применение типовых унифицированных объемно-планировочных и конструктивных решений.

Унифицированные параметры промышленных зданий

  1. пролет - расстояние между продольными осями. Пролет может быть: 6, 9, 12, 18 (через 6 метров) до 48 м;
  2. шаг - расстояние между поперечными осями. Может быть: 6, 12 м;
  3. высота - расстояние от уровня пола одного этажа до уровня пола другого. В одноэтажных - от уровня пола (0.000) до уровня низа несущих конструкций покрытия. Высота: 3.6-6 через 0.6 м; 5-10.8 через 1.2 м, 10.8-18 через 1.8 м;
  4. сетка колонн - совокупность расстояний между продольными и поперечными разбивочными осями.

Габаритные схемы зданий маркируют шифром:
Б 30-84
Б - бескаркасное;
30 - пролет в метрах;
84 - высота в дм.

К 24-144

К &- крановое;
24 - пролет в метрах;
144 - высота в дм.

Для каждой отрасли производства применяют свои унифицированные параметры промышленных зданий .

Современное промышленное строительство ориентируется на применение типовых унифицированных и , что позволяет планировать промышленные объекты по модульной схеме.

Специалистами разработаны обязательные к применению параметры изготовления конструкций и их сборки для промышленных объектов разных отраслей промышленности. Это позволяет во многом унифицировать процесс изготовления и монтажа строительных конструкций.

1. Промышленные здания машиностроительного и металлургического профиля с пролетами 18 и более метров проектируются с таким расчетом, чтобы длина поперечных пролетов бала кратна 6 метрам (например, 24 или 30 метров).

2. В промышленном строительстве применяется такое понятие, как шаг колонны. Шагом колонны называется расстояние между разбивочными осями в продольном направлении. Этот параметр также принимают кратным 6 метрам.

3. Унифицируется высота промышленных зданий. Переменная величина для промышленных объектов высотой 3,6 – 4,8 метров должна составлять 600 миллиметров, для объектов высотой 4,8 – 10,8 метров - 1200 миллиметров, выше 10,8 – 1800 миллиметров.

Оси поперечных осадочных швов проектируются совпадающими с поперечными разбивочными осями, геометрическая ось торцовых колонн должна смещаться от них на 500 миллиметров. Ось кранового рельса должна проходить на расстоянии 750 мм от разбивочной оси. Если соседние пролеты обладают одинаковой высотой, то геометрическая ось сечения колонн среднего ряда должна совпадать с разбивочной осью.

Также регламентируется расстояние от продольной оси здания до наружной грани крайних колонн. Для промышленных объектов, в которых предполагается наличие кранов грузоподъемностью выше 30 тонн или с шагом между 12 метров такое расстояние должно составлять 250 или 500 миллиметров.

Еще один немаловажный параметр при проектировании промышленных зданий - перепад высот двух параллельных пролетов. При отсутствии в здании кранов он выполняется на одной колонне, для зданий с кранами грузоподъемностью до 30 тонн принимается одна разбивочная ось, более 30 тонн - соответственно две оси, между которыми проектируется вставка, равная величине привязки (250 или 500 мм). При ширине промышленного объекта более 60 метров в случае перепада высот параллельных пролетов температурный шов здания должен совмещаться с местом примыкания этих пролетов. В этом случае примыкание параллельных пролетов осуществляется на парных колоннах, а между разбивочными осями вводится вставка. При соблюдении этих правил становится возможным монтаж без монтажа дополнительных конструкций.

В связи с использованием разнообразных технологий в различных отраслях промышленности при проектировании их несущие конструкции необходимо располагать строго единообразно по отношению к разбивочным осям. Это позволяет спроектировать унифицированные и взаимозаменяемые строительные конструкции, которые можно будет использовать при строительстве различных промышленных объектов. Сегодня в промышленном строительстве широко применяются унифицированные секции и пролеты, например, для строительства одноэтажных промышленных объектов с . В результате непрерывного научно технического прогресса постоянно совершенствуются как технологии, так и промышленное оборудование, в результате чего очень часто требуется модернизация производства. Этот процесс практически всегда сопровождается совершенствованием схемы расположения оборудования и транспортных путей, заменой устаревшего оборудования, установкой дополнительных агрегатов.

Все эти процессы наиболее легко осуществляются в зданиях, спроектированных с так называемой «ячейковой структурой», которая предполагает сплошную застройку и квадратную сетку колонн. Применяется для одноэтажных промышленных объектов. Большим преимуществом таких «гибких» зданий является то, что изменения в технологическом процессе не требуют изменения конструкции здания, то есть за счет «гибкости» здания повышается технологическая маневренность промышленных предприятий. Это обусловлено возможностью более эффективного использования существующих площадей и более низкой стоимостью строительства. Наиболее актуально использование «гибких цехов» в машиностроительной отрасли.

В отечественной и зарубежной практике строительства преимущественное распространение получили одноэтажные производственные здания. Они представляют собой исторически сложившийся тип сооружения, значительно отличающийся от наиболее распространённых типов жилых и общественных зданий. Этот тип зданий определился специфическими условиями развития технологии промышленного производства. В ранние периоды развития промышленного развития применяли здания небольшой ширины (15 - 25м) с боковым освещением, чердаком, двускатной кровлей и наружными водостоками. Однако необходимость в значительных площадях производственных помещений приводила к увеличению длины и усложнению эксплуатации зданий.

Более компактную застройку и увеличение ширины здания до 40 м обеспечило применение зданий базиликального типа с освещением средней части через окна, расположенные в перепаде высот пролётов. Безграничное увеличение ширины здания и переход к зданиям сплошной застройки стали возможными лишь с применением фонарей верхнего света или искусственного освещения и удалением атмосферных вод с помощью внутренних водостоков. При этом здания приобрели многоскатную и плоскую системы покрытия без чердака или с техническим этажом в пределах несущих конструкций.

Специфическими особенностями одноэтажных производственных зданий являются: размещение оборудования для определённого технологического процесса только в одной, горизонтальной плоскости, что обеспечивает самые удобные связи между цехами и позволяет использовать наиболее экономичный горизонтальный транспорт (напольный, подвесной, крановый); независимое решение строительных конструкций здания от технологического оборудования, нагрузки от которого передаются непосредственно на грунт, что позволяет применять укрупнённые сетки колонн и легко перемещать и модернизировать оборудование; возможность осуществления естественного освещения необходимой интенсивности и равномерности по всей производственной площади.

К недостаткам одноэтажных зданий относятся: значительная площадь застройки, что ограничивает применение этого типа здания в условиях затеснённой городской застройки и сложного рельефа территории; увеличение площади наружных ограждений, особенно кровли, и возрастание в связи с этим эксплуатационных расходов; трудности архитектурно-композиционного решения здания в связи с его малой высотой и большой протяжённостью.

Объёмно-планировочные решения одноэтажных производственных зданий и их основные параметры

Одноэтажные производственные здания по характеру застройки территории промышленного предприятия подразделяют на здания сплошной и павильонной застройки.

Здания сплошной застройки представляют собой многопролётные корпуса большой ширины. Такие здания бывают либо бесфонарные, рассчитанные на искусственное освещение и вентиляцию, либо с различными системами верхнего света. В зданиях сплошной застройки естественное проветривание, как правило, не обеспечивает необходимого микроклимата в производственных помещениях. Эта задача может быть решена только путём искусственной механической вентиляции. Здания сплошной застройки имеют многоскатную или плоскую кровлю с внутренним водоотводом.

Здания павильонной застройки имеют сравнительно небольшое число пролётов, обеспечивающее боковое освещение и естественное проветривание с забором воздуха через проёмы в стенах и вытяжку через аэрационные фонари или шахты в кровле. Кровлю в зданиях павильонной застройки иногда устраивают с наружным водоотводом. К достоинствам павильонной застройки относят меньшую пожароопасность предприятия в целом, лучшие санитарно-гигиенические условия (благодаря возможности естественного сквозного проветривания), а также возможность большей изоляции цехов с производственными вредностями, пожаро- и взрывоопасных цехов.

Здания павильонной застройки можно объединять между собой в виде гребенчатых, П- и Ш-образных корпусов.

В зависимости от расположения внутренних опор одноэтажные производственные здания подразделяют на пролётные, ячейковые и зальные типы.

В практике промышленного строительства пролётный тип здания весьма распространён. Объёмно-планировочное решение зданий этого типа определяется взаимны расположением пролётов. В зданиях сплошной застройки рекомендуемой схемой взаимного расположения пролётов является параллельная. При таком расположении пролётов важно соблюдать группировку одноразмерных пролётов и распределение групп пролётов в порядке их последовательного возрастания. Случайное чередование пролётов различных габаритов усложняет конструктивное решение и условия эксплуатации кровли здания, где образуются перепады высот и снеговые "мешки".

Иногда к ряду параллельных пролётов с одной или с двух сторон примыкают поперечные пролёты. Такие схемы усложняют конструктивное решение здания, но они необходимы для некоторых цехов по требованиям производства.

Габариты пролёта назначают в соответствии с проектируемым в нём технологическим процессом и транспортным оборудованием. Для зданий без мостовых кранов применяют пролёты 6; 9; 12; 18; 24; 30 и 36 м, а для зданий, оборудованных кранами, - 18; 24; 30 и 36 м. Шаг колонн по крайним рядам принимают обычно равным 6 м (за исключением случаев применения наружных стеновых панелей длиной 12 м), по средним рядам - 6 или 12 м. Увеличенный (более 12 м) шаг колонн основного каркаса применяют при крупных габаритах технологического оборудования, при применении некоторых систем пространственных перекрывающих конструкций, при неблагоприятных грунтовых условиях, затрудняющих устройство фундаментов, для повышения гибкости здания.

Высоту одноэтажных каркасных зданий от отметки чистого пола до низа перекрывающих конструкций на опоре назначают кратно укрупнённым модулям: 6 М (600 мм) - при высотах до 7,2 м; 12 М - (1200 мм) - при высотах более 7,2 м.

Наличие перепадов высот пролётов требует применения парных колонн, обвязочных балок для поддержания висячих стен, устройства дополнительных водостоков или карнизов. При выравнивании высот пролётов повышается единовременная стоимость здания за счёт увеличения высоты торцовых стен и длины колонн, а также эксплуатационные расходы на отопление и вентиляцию. Поэтому целесообразность выравнивания высот пролётов следует подтверждать технико-экономическими расчётами.

Здания ячейкового типа характеризуются квадратной или близкой к этому сеткой колонн и, как правило, одинаковой высотой до низа перекрывающих конструкций с возможностью подвески к ним подъёмно-транспортного оборудования, перемещающегося, в двух взаимно перпендикулярных направлениях. Сетки колонн и высоту зданий ячейкового типа принимают по аналогии с унифицированными параметрами зданий пролётного типа; наиболее часто применяют сетки колонн 18 ?18 м и 24 ? 24 м.

Для зданий зального типа характерны большие пролёты (36 - 100 м, а иногда более), обусловливающие использование специальных конструкций. Этот тип здания применяют в случаях, когда необходима большая производственная площадь без внутренних опор (например, для ангаров, эллингов и др.). Объёмно-планировочное и конструктивное решение одноэтажного здания зального типа не является массовым, а потому жёстко не регламентируется.

Формирование новых типов одноэтажных производственных зданий идёт двумя путями. Основное направление характеризуется совершенствованием систем естественного и смешанного освещения, другое направление - развитием бесфонарных герметических зданий без естественного света.

Наиболее прогрессивными системами естественного освещения являются новые типы зенитных фонарей с заполнением из стеклопакетов, органического стекла, стеклопластика. Для южных районов рациональны различные формы шедовых покрытий. Здания, предназначаемые для размещения производств, обусловливающих автоматическое регулирование температуры и влажности воздуха или особого режима по чистоте воздуха в помещении, целесообразно проектировать без фонарей, а в отдельных случаях и без окон.

Понравилась статья? Поделитесь с друзьями!
Была ли эта статья полезной?
Да
Нет
Спасибо, за Ваш отзыв!
Что-то пошло не так и Ваш голос не был учтен.
Спасибо. Ваше сообщение отправлено
Нашли в тексте ошибку?
Выделите её, нажмите Ctrl + Enter и мы всё исправим!